Le SI: définir et redéfinir les unités

Mickaël Melzani

Enseignant en CPGE, lycée Raoul Follereau, Belfort

Congrès de l'UDPPC, 29 octobre 2025

Outline

1. La métrologie et le SI

- 2. Comment définir une unité?
 - 2.1 Le principe d'une définition
 - 2.2 Exemples de formulations "concrètes"
 - 2.3 Les définitions de 2018/19
- 3. Pourquoi et comment redéfinir une unité?
 - 3.1 Le kg d'avant 2019
 - 3.2 Le kg d'après 2019
 - 3.3 Les caractéristiques d'une redéfinition

Outline

1. La métrologie et le SI

2. Comment définir une unité?

- 2.1 Le principe d'une définition
- 2.2 Exemples de formulations "concrètes"
- 2.3 Les définitions de 2018/19

3. Pourquoi et comment redéfinir une unité?

- 3.1 Le kg d'avant 2019
- 3.2 Le kg d'après 2019
- 3.3 Les caractéristiques d'une redéfinition

La mesure est partout

Métrologie = science de la mesure.

1/ Métrologie légale : contraintes et contrôles imposés par les états (balances, pompes à essence, radars, compteurs, polluants, matériel médical, analyses biologiques...).

balance dans un commerce

metre de classe II

- Permet à la société de fonctionner : confiance dans les échanges, commerce, lois...
- 2/ Métrologie industrielle : dimensions, matériaux, normes...

La mesure est partout

- 3/ Métrologie scientifique : recherche fondamentale, appliquée.
 - Mesures, exactitude et maîtrise des incertitudes nécessaire en recherche.
 - Définitions des unités du SI et leur réalisation.

Question : quelle est la mesure la plus précise actuellement ?

La mesure est partout

- 3/ Métrologie scientifique : recherche fondamentale, appliquée.
 - Mesures, exactitude et maîtrise des incertitudes nécessaire en recherche.
 - Définitions des unités du SI et leur réalisation.

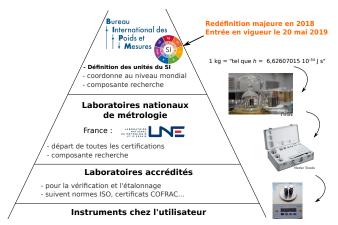
Question : quelle est la mesure la plus précise actuellement ?

• Les fréquences atomiques.

Exemple: une des transitions de ²⁷Al⁺,

$$f = 1121015393207859,2 \,\mathrm{Hz}$$

$$u(f) =$$


$$0.2\,\mathrm{Hz}$$

$$u(f)/f = 2 \times 10^{-16}$$

Une organisation internationale

Une hiérarchie et des normes :

Importance du SI : toutes ces mesures, légales, industrielles, scientifiques, s'intègrent dans une grande chaîne qui les lient aux unités de base du **SI**.

Une organisation internationale

Une hiérarchie et des normes :

La métrologie et le SI

0000

Importance du SI: toutes ces mesures, légales, industrielles, scientifiques, s'intègrent dans une grande chaîne qui les lient aux unités de base du SI.

Outline

1. La métrologie et le SI

2. Comment définir une unité?

- 2.1 Le principe d'une définition
- 2.2 Exemples de formulations "concrètes"
- 2.3 Les définitions de 2018/19

3. Pourquoi et comment redéfinir une unité?

- 3.1 Le kg d'avant 2019
- 3.2 Le kg d'après 2019
- 3.3 Les caractéristiques d'une redéfinition

Outline

1. La métrologie et le SI

2. Comment définir une unité?

- 2.1 Le principe d'une définition
- 2.2 Exemples de formulations "concrètes"
- 2.3 Les définitions de 2018/19

3. Pourquoi et comment redéfinir une unité?

- 3.1 Le kg d'avant 2019
- 3.2 Le kg d'après 2019
- 3.3 Les caractéristiques d'une redéfinition

Mesurer par rapport à une unité, c'est dire combien de fois la grandeur mesurée contient l'unité.

C'est dire combien de fois il faut répéter l'unité pour obtenir la grandeur.

Exemple :

 $L=5.2\,\mathrm{m} \to \mathrm{la}$ longueur L s'obtient en répétant 5,2 fois la longueur unité "1 m".

Les unités sont des grandeurs physiques particulières, choisies **par convention** pour **servir de référence**.

⇒ il faut se mettre d'accord, internationalement, sur leur définition et leur réalisation.

Mesurer par rapport à une unité, c'est dire combien de fois la grandeur mesurée contient l'unité.

C'est dire combien de fois il faut répéter l'unité pour obtenir la grandeur.

Exemple :

 $L=5.2\,\mathrm{m}$ \rightarrow la longueur L s'obtient en répétant 5,2 fois la longueur unité "1 m".

Les unités sont des grandeurs physiques particulières, choisies **par convention** pour **servir de référence**.

⇒ il faut se mettre d'accord, internationalement, sur leur définition et leur réalisation.

Notation:

$$L = \underbrace{\{L\}}_{\text{valeur numérique unité}} \underbrace{[L]}_{\text{unité}}.$$

Définition actuelle du mètre (9e brochure du SI, www.bipm.org/fr/publications/si-brochure):

"Le mètre [...] est défini en prenant la valeur numérique fixée de la vitesse de la lumière dans le vide, c, égale à 299 792 458 lorsqu'elle est exprimée en ${\rm m\,s}^{-1}$."

 \rightarrow Formulation qui consiste à fixer la valeur numérique $\{c\}=299\,792\,458.$

Comment définir une unité?

Définition actuelle du mètre (9e brochure du SI, www.bipm.org/fr/publications/si-brochure):

"Le mètre [...] est défini en prenant la valeur numérique fixée de la vitesse de la lumière dans le vide, c, égale à 299 792 458 lorsqu'elle est exprimée en ${\rm m\,s}^{-1}$."

ightarrow Formulation qui consiste à fixer la valeur numérique $\{c\}=299\,792\,458.$

Définitions des 7 unités de base du SI :

Unité de base	Définition de l'unité de base
seconde	$\{\Delta u_{Cs}\} = 9192631770$ lorsqu'exprimée en s^{-1}
mètre	$\{c\}=$ 299 792 458 lorsqu'exprimée en $\mathrm{m\cdot s^{-1}}$
kilogramme (2019)	$\{h\}=6,62607015 imes10^{-34}$ lorsqu'exprimée en $\mathrm{kg\cdot m^2\cdot s^{-1}}$
ampère (2019)	$\{e\}=1,\!602176634 imes10^{-19}$ lorsqu'exprimée en $\mathrm{A\cdot s}$
kelvin (2019)	$\{k_{\mathrm{B}}\}=1{,}380649 imes10^{-23}$ lorsqu'exprimée en
	$kg \cdot m^2 \cdot s^{-2} \cdot K^{-1}$
mole (2019)	$\{N_{\rm A}\} = 6{,}02214076 \times 10^{23} \; {\sf lorsqu'exprimée} \; {\sf en} \; { m mol}^{-1}$
candela	$\{\mathcal{K}_{cd}\} = 683 \; lorsqu'exprim\'ee \; en \; \mathrm{cd} \cdot \mathrm{sr} \cdot \mathrm{kg}^{-1} \cdot \mathrm{m}^{-2} \cdot \mathrm{s}^3$

Définir une unité

Fixer la valeur numérique d'une grandeur physique choisie

Définir une unité

 \Leftrightarrow

Fixer la valeur numérique d'une grandeur physique choisie

Parfois difficile à comprendre : $\{c\}$ fixée à 299 792 458 signifie?

ightarrow Si on veut être plus **concret**, on se ramène à une grandeur de **même nature** que l'unité définie.

Exemple : « le mètre est la <u>distance</u> parcourue par la lumière pendant la durée (exacte, par convention) 1/299792458 seconde. »

Définir une unité

 \Leftrightarrow

Fixer la valeur numérique d'une grandeur physique choisie

Parfois difficile à comprendre : $\{c\}$ fixée à 299 792 458 signifie?

ightarrow Si on veut être plus **concret**, on se ramène à une grandeur de **même nature** que l'unité définie.

Exemple : « le mètre est la $\underline{\text{distance}}$ parcourue par la lumière pendant la durée (exacte, par convention) 1/299792458 seconde. »

On a donc définition "valeur numérique" $\underset{\text{traduction}}{\Leftrightarrow}$ définition "concrète" $\uparrow \qquad \qquad \uparrow \qquad \qquad \qquad$ pour les scientifiques pour les élèves?

Outline

1. La métrologie et le SI

2. Comment définir une unité?

- 2.1 Le principe d'une définition
- 2.2 Exemples de formulations "concrètes"
- 2.3 Les définitions de 2018/19

3. Pourquoi et comment redéfinir une unité?

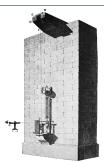
- 3.1 Le kg d'avant 2019
- 3.2 Le kg d'après 2019
- 3.3 Les caractéristiques d'une redéfinition

Le mètre (de 1791):

Formulation concrète : 1 m, c'est la longueur d'un quart du méridien divisée par 10⁶.

Formulation val. num. : $\{L_{1/4 \text{ méridien}}\} = 10^6 \text{ lorsqu'exprimée en m.}$

livre sur cette épopée : Mesurer le monde, K. Alder


Un exemple moins évident :

Initialement (\approx 1789), la proposition de définition du mètre était :

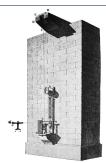
Formulation concrète : un mètre est la longueur d'un pendule dont la demi-période est d'une seconde, sous une pesanteur g à Paris.

Note: pour le pendule simple, $T^2 = 4\pi^2 \frac{L}{g}$.

Formulation val. num. : quelle grandeur physique voit ainsi sa valeur numérique fixée?

Borda et Cassini, détermination du pendule qui bat la seconde, 1792.

Et plus tôt, cf aussi arxiv.org/pdf/physics/0412078 source image: wikipedia commons


Un exemple moins évident :

Initialement (\approx 1789), la proposition de définition du mètre était :

Formulation concrète : un mètre est la longueur d'un pendule dont la demi-période est d'une seconde, sous une pesanteur g à Paris.

Note: pour le pendule simple, $T^2 = 4\pi^2 \frac{L}{g}$.

Formulation val. num. : quelle grandeur physique voit ainsi sa valeur numérique fixée?

Borda et Cassini, détermination du pendule qui bat la seconde, 1792.

Et plus tôt, cf aussi arxiv.org/pdf/physics/0412078 source image : wikipedia commons

•
$$\{T\}^2 = 4\pi^2 \frac{\{L\}}{\{g\}}$$
 avec $\{T\} = 2$ et $\{L\} = 1$ donne $\{g\} = \pi^2$.

- Et en effet, $\{g\} \approx 9.81$ et $\pi^2 \approx 9.87$ proches à 0.6 % près!
- Définition pas retenue, mais presque...

Un exemple moins évident :

Initialement (≈ 1789), la proposition de définition du mètre était :

Formulation concrète : un mètre est la longueur d'un pendule dont la demi-période est d'une seconde, sous une pesanteur g à Paris.

Note: pour le pendule simple, $T^2 = 4\pi^2 \frac{L}{\sigma}$.

Formulation val. num. : quelle grandeur physique voit ainsi sa valeur numérique fixée?

Et fixer {g} permet bien des mesures de L, via :

$$L = rac{ ext{fix\'e}
ightarrow ext{g} imes ext{T}^2
ightarrow ext{mesur\'e}}{4\pi^2}.$$

- $\{T\}^2 = 4\pi^2 \frac{\{L\}}{\{g\}}$ avec $\{T\} = 2$ et $\{L\} = 1$ donne $\{g\} = \pi^2$. Et en effet, $\{g\} \approx 9.81$ et $\pi^2 \approx 9.87$ proches à 0.6 % près!
- Définition pas retenue, mais presque...

Avant de passer au kg, retour sur la définition et remarque :

Définir une unité

 \Leftrightarrow

Fixer la **valeur numérique** d'une grandeur physique choisie

ightarrow ce n'est pas la **valeur** qu'on fixe, mais la **valeur numérique** (lorsqu'exprimée dans les unités qu'on cherche à définir).

$$\underbrace{L_{1/4\,\text{méridien}}}_{\text{fixé par la nature}} = \underbrace{10^6}_{\text{fixé par convention } |\text{défini par cette égalité}}$$

Le kilogramme (de 1889) :

Le PIK (1889 – 2019)

Formulation concrète : un kg est la masse de ce cylindre de platine iridié, appelé PIK.

Formulation val. num. : la masse m_{PIK} du PIK a pour valeur numérique

photographie du PIK non libre de droit... retirée de cette version du diaporama mise sur le web

$$\{m_{\sf PIK}\} = 1$$

(exprimée en kg).

Outline

1. La métrologie et le SI

2. Comment définir une unité?

- 2.1 Le principe d'une définition
- 2.2 Exemples de formulations "concrètes"
- 2.3 Les définitions de 2018/19

3. Pourquoi et comment redéfinir une unité?

- 3.1 Le kg d'avant 2019
- 3.2 Le kg d'après 2019
- 3.3 Les caractéristiques d'une redéfinition

Le kilogramme (d'après 2019) (entrée en vigueur le 20 mai 2019) :

Basé sur la constante de Planck h.

avant 2019

après 2019

photographie du PIK non libre de droit...

un kilogramme est tel que $h = 6.626\,070\,15 \times 10^{-34}\,\mathrm{kg \cdot m^2 \cdot s^{-1}}$

1 kg, c'est exactement la masse de ce cylindre de platine

1 kg, c'est... quoi au juste ? 😰

Le kilogramme (d'après 2019) :

Formulation concrète : ?

Formulation val. num. : un kg est tel que $\{h\}=6,626\,070\,15\times10^{-34}$ lorsqu'exprimée en ${\rm kg\,m^2\,s^{-1}}$.

$$\underbrace{h}_{\text{fix\'e par la nature}} = \underbrace{6,626\,070\,15\times10^{-34}}_{\text{fix\'e par convention}} \underbrace{\text{kg}}_{\text{|d\'efini par cette \'egalit\'e| d\'efini par ailleurs (c et c\'esium)}$$

Le kilogramme (d'après 2019)

Formulation concrète: ? cherchons une expérience.

Le kilogramme (d'après 2019)

Formulation concrète : ? cherchons une expérience.

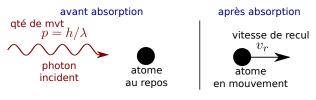
Atome immobile qui absorbe un photon de longueur d'onde λ .

Le kilogramme (d'après 2019)

Formulation concrète : ? cherchons une expérience.

Atome immobile qui absorbe un photon de longueur d'onde λ .

 \Rightarrow Conservation de la quantité de mouvement : $\frac{h}{\lambda} = m v_r$


Si
$$\lambda = 662,607015 \,\mathrm{nm}$$
 et $v_r = 10^{-27} \,\mathrm{m \cdot s^{-1}}$, alors $m = \frac{h}{\lambda v_r} = 1 \,\mathrm{kg}$.

Le kilogramme (d'après 2019)

Formulation concrète : ? cherchons une expérience.

Atome immobile qui absorbe un photon de longueur d'onde λ .

 \Rightarrow Conservation de la quantité de mouvement : $\frac{h}{\lambda} = m v_r$

Si
$$\lambda = 662,607015 \,\mathrm{nm}$$
 et $v_r = 10^{-27} \,\mathrm{m \cdot s^{-1}}$, alors $m = \frac{h}{\lambda v_r} = 1 \,\mathrm{kg}$.

 \Rightarrow $m=1\,\mathrm{kg}$ est la masse d'un objet qui, absorbant un photon de $\lambda=662,6\,070\,15\,\mathrm{nm}$, acquiert une vitesse de recul $v_r=10^{-27}\,\mathrm{m\cdot s^{-1}}$.

Le kilogramme (d'après 2019)

Formulation concrète : « $m=1\,\mathrm{kg}$ est défini comme la masse d'un objet qui, absorbant un photon de $\lambda=662,6\,070\,15\,\mathrm{nm}$, acquiert une vitesse de recul $v_r=10^{-27}\,\mathrm{m\cdot s^{-1}}$. »

- Toutes ces val. num. sont exactes, elles définissent ce qu'est 1 kg.
- Définition équivalente à $\{h\} = 6,626\,070\,15 \times 10^{-34}$.

Explications accessibles pour des terminales?

Le kilogramme (d'après 2019)

Autre façon d'expliquer : dire que fixer $\{h\}$ permet bien de mesurer des masses :

$$m = \frac{h \leftarrow \text{fixée}}{\lambda \, \textit{V}_r \leftarrow \text{mesurés}}$$

• Utilisé pour les atomes, incertitude : $u(m)/m = 10^{-10}$!

Utilisé aussi avant 2019, mais h devait être mesurée par ailleurs (dans une exp. qui mobilise une masse de référence).

Le kilogramme (d'après 2019)

Autre façon d'expliquer : dire que fixer $\{h\}$ permet bien de mesurer des masses :

$$m = \frac{h \leftarrow \text{fixée}}{\lambda \, v_r \leftarrow \text{mesurés}}$$

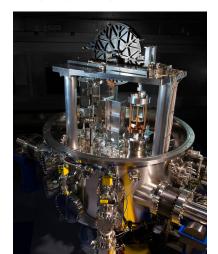
 Utilisé pour les atomes, incertitude : u(m)/m = 10⁻¹⁰!

Mesurer une masse grâce à l'impulsion d'un photon

Utilisé aussi avant 2019, mais h devait être mesurée par ailleurs (dans une exp. qui mobilise une masse de référence).

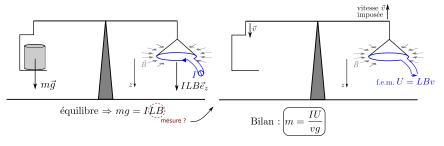
 Pour passer à des masses macroscopiques : compter les atomes dans une sphère de silicium monocristalline.

Projet Avogadro. Nb d'atomes dans la sphère AVO28-S5c :


 $N = 2{,}151\,885\,70(4)\times10^{25}$

 $u(N)/N = 2 \times 10^{-8}$,

Le kilogramme (d'après 2019) et la balance de Kibble


C'est l'expérience "canonique" pour la pesée via la nouvelle définition.

Le kilogramme (d'après 2019) et la balance de Kibble

C'est l'expérience "canonique" pour la pesée via la nouvelle définition.

- $\rightarrow U$ et I mesurés en utilisant des effets quantiques :
 - U via effet Josephson, $U = nK_J^{-1} \times f$, $n \in \mathbb{Z}$ et $K_J = 2e/h$.
 - R via effet Hall : $R = R_{K}/n$, $n \in \mathbb{N}^{*}$, $R_{K} = h/e^{2}$.

La mole (d'après 2019) :

La constante d'Avogadro N_A .

La mole (d'après 2019) :

La constante d'Avogadro N_A .

Formulation concrète : une mole contient par définition $6{,}022\,140\,76\times10^{23}$ entités.

Formulation val. num. : une mole est telle que

$$\{N_{\mathsf{A}}\} = 6,022\,140\,76\times10^{23}$$

lorsqu'exprimée en mol⁻¹.

La mole (d'après 2019):

La constante d'Avogadro N_A .

Formulation concrète : une mole contient par définition $6{,}022\,140\,76\times10^{23}$ entités.

Formulation val. num. : une mole est telle que

$$\{N_{\mathsf{A}}\} = 6,022\,140\,76\times10^{23}$$

lorsqu'exprimée en mol⁻¹.

Remarque sur l'ancienne définition (1960 - 2018) :

- une mole était le nombre d'atomes présents dans 12 g de ¹²C;
- équivalent à fixer la val. num. $\{M_{12C}\}=12$ (masse molaire du 12 C en g/mol).

Ce n'est plus le cas. En 2022, $M_{12C} = 12,000\,000\,0126(37)\,\mathrm{g/mol}$.

Le kelvin (d'après 2019) :

La constante de Boltzmann $k_{\rm B}$.

Formulation val. num. :

 $\{\textit{k}_B\}=1{,}380\,649\times10^{-23}$ lorsqu'exprimée en $\rm kg\cdot m^2\cdot s^{-2}\cdot {\overset{}{K}}^{-1}$

Formulation concrète : ?

Thermomètre acoustique à gaz, NIST

Le kelvin (d'après 2019) :

La constante de Boltzmann $k_{\rm B}$.

Formulation val. num. :

 $\{\it k_B\}=1,380\,649\times 10^{-23}$ lorsqu'exprimée en $\rm kg\cdot m^2\cdot s^{-2}\cdot {\overset{}{K}}^{-1}$

Formulation concrète : ?

Thermomètre acoustique à gaz NIST

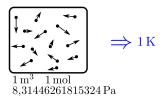
Remarque:

Constante des gaz parfait $R = N_A k_B$.

 $\{N_A\}$ et $\{k_B\}$ fixées $\Rightarrow \{R\}$ est fixée.

Définition équivalente du kelvin :

 $\{R\} = 8,314\,462\,618\,153\,24$ lorsqu'exprimée en $J \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$.



Le kelvin (d'après 2019) :

Formulation val. num. : $\{R\}=8,314\,462\,618\,153\,24$ lorsqu'exprimée en $J\cdot \mathrm{mol}^{-1}\cdot \mathbf{K}^{-1}$.

Formulation concrète : utilisons pV = nRT pour trouver une situation concrète.

Formulation concrète : " $T=1\,\mathrm{K}$ est définie comme la température de $n=1\,\mathrm{mol}$ de gaz modélisé parfait, contenu dans un volume $V=1\,\mathrm{m}^3$, lorsqu'il exerce une pression $p=8,314\,462\,618\,153\,24\,\mathrm{Pa}$ sur les parois."

Le kelvin (d'après 2019) :

Autre façon d'expliquer : dire que fixer $\{R\}$ (ou $\{k_B\}$ et $\{N_A\}$) permet bien des mesures de T, via

$$T = rac{pV/n \leftarrow ext{mesur\'es}}{R \leftarrow ext{fix\'e}}$$

- C'est le fonctionnement des thermomètres à gaz.
- Utilisé bien avant 2019, mais R devait être mesurée par ailleurs, dans une expérience identique où la température est connue ($T_{\rm triple, H_2O}$ par exemple) \rightarrow n'était pas une mesure "primaire".

Le kelvin (d'après 2019) :

Autre façon d'expliquer : dire que fixer $\{R\}$ (ou $\{k_B\}$ et $\{N_A\}$) permet bien des mesures de T, via

$$T = \frac{pV/n \leftarrow \mathsf{mesur\acute{e}s}}{R \leftarrow \mathsf{fix\acute{e}}}$$

- C'est le fonctionnement des thermomètres à gaz.
- Utilisé bien avant 2019, mais R devait être mesurée par ailleurs, dans une expérience identique où la température est connue ($T_{\rm triple, H_2O}$ par exemple) \rightarrow n'était pas une mesure "primaire".

Remarque sur l'ancienne définition (1954 - 2019) :

- Kelvin défini en fixant la val. num. du point triple de l'eau, à { T_{triple,H2O}} = 273,16.
- Ce n'est plus le cas. En 2019, $T_{\rm triple,H_2O} = 273,160\,00(10)\,{\rm K}.$

L'ampère :

La charge élémentaire e

L'ampère :

La charge élémentaire e

Formulation val. num. : $\{e\} = 1,602176634 \times 10^{-19}$ exprimée en $A \cdot s$.

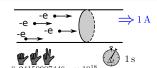
Formulation concrète : ?

Rq: $N = \frac{1}{1,602176634 \times 10^{-19}} = 6,24150907446... \times 10^{18}$ exact.

L'ampère :

La charge élémentaire e

Formulation val. num. : $\{e\} = 1,602176634 \times 10^{-19}$ exprimée en $A \cdot s$.


Formulation concrète : ?

Rq: $N = \frac{1}{1,602176634 \times 10^{-19}} = 6,24150907446... \times 10^{18}$ exact.

Formulation concrète : 1 A est défini comme le courant réalisé par le passage de

 $N=6,24150907446...\times 10^{18}$ électrons par seconde.

En effet,
$$I = \frac{N \times e}{1 \text{ s}} = 1 \text{ A}.$$

L'ampère :

Autre façon d'expliquer : dire que fixer $\{e\}$ permet bien des mesures de I, via

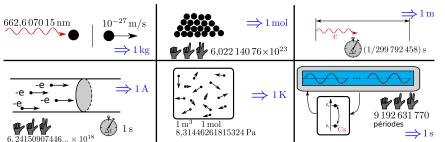
$$I = \frac{\mathsf{nb}\;\mathsf{d'\'electrons}\;\mathsf{(mesur\'e)} imes e \leftarrow \mathsf{fix\'e}}{\Delta t \leftarrow \mathsf{mesur\'e}}.$$

Rq : expériences de comptage d'électrons en cours de conception.

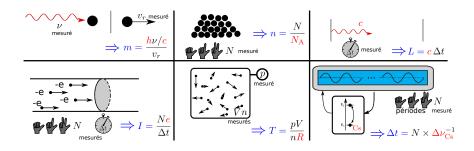
Actuellement ce n'est pas la méthode utilisée (on mesure U et R via Josephson et Hall).

Étalon réglable 0-10 V à partir de l'effet Josephson (NIST).

Bilan : des définitions "valeurs numériques"...


seconde	$\{\Delta u_{Cs}\} = 9192631770$ lorsqu'exprimée en s^{-1}	
mètre	$\{c\}=299792458$ lorsqu'exprimée en $\mathrm{m\cdot s}^{-1}$	
kilogramme (2019)	$\{h\}=6,\!62607015 imes10^{-34}$ lorsqu'exprimée en $\mathrm{kg\cdot m^2\cdot s^{-1}}$	
ampère (2019)	$\{e\}=1,\!602176634 imes10^{-19}$ lorsqu'exprimée en $\mathrm{A}\cdot\mathrm{s}$	
kelvin (2019)	$\{k_{\rm B}\}=1,380649\times10^{-23}$ lorsqu'exprimée en ${ m kg\cdot m^2\cdot s^{-2}\cdot K^{-1}}$	
mole (2019)	$\{\mathit{N}_{A}\} = 6,02214076 imes 10^{23} \; lorsqu'exprim\'ee \; en \; \mathrm{mol}^{-1}$	

Bilan : des définitions "valeurs numériques"...


seconde	$\{\Delta u_{Cs}\} = 9192631770$ lorsqu'exprimée en s^{-1}	
mètre	$\{c\}=299792458$ lorsqu'exprimée en $\mathrm{m\cdot s}^{-1}$	
kilogramme (2019)	$\{h\}=6,62607015 imes10^{-34}$ lorsqu'exprimée en $\mathrm{kg\cdot m^2\cdot s^{-1}}$	
ampère (2019)	$\{e\}=1,\!602176634 imes10^{-19}$ lorsqu'exprimée en ${ m A\cdot s}$	
kelvin (2019)	$\{k_{\rm B}\}=1,380649 imes10^{-23}$ lorsqu'exprimée en ${ m kg\cdot m^2\cdot s^{-2}\cdot K^{-1}}$	
mole (2019)	$\{N_{\rm A}\} = 6{,}02214076 \times 10^{23} \; {\sf lorsqu'exprimée \; en \; mol^{-1}}$	

...aux définitions concrètes :

Ces définitions permettent de mesurer :

Outline

1. La métrologie et le SI

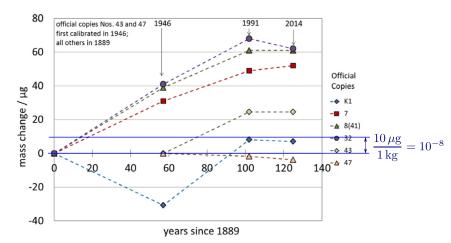
2. Comment définir une unité?

- 2.1 Le principe d'une définition
- 2.2 Exemples de formulations "concrètes"
- 2.3 Les définitions de 2018/19

3. Pourquoi et comment redéfinir une unité?

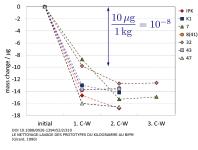
- 3.1 Le kg d'avant 2019
- 3.2 Le kg d'après 2019
- 3.3 Les caractéristiques d'une redéfinition

Outline


1. La métrologie et le SI

- 2. Comment définir une unité?
 - 2.1 Le principe d'une définition
 - 2.2 Exemples de formulations "concrètes"
 - 2.3 Les définitions de 2018/19
- 3. Pourquoi et comment redéfinir une unité?
 - 3.1 Le kg d'avant 2019
 - 3.2 Le kg d'après 2019
 - 3.3 Les caractéristiques d'une redéfinition

La situation avant 2019:


La masse du PIK / des copies varie (adsorption de matière? mal compris)

La situation avant 2019 :

• Procédure de nettoyage pour retirer les poussières de surface :

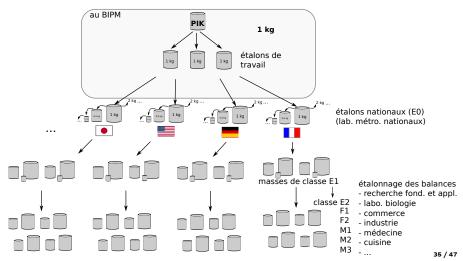
• Usure inattendue des étalons de travail (déplacements) : entre 1992 et 2014, le BIPM étalonne les masses avec une erreur de 35 µg (!)...

...qui n'est découverte qu'en 2014 quand on ressort le PIK de son coffre.

https://iopscience.iop.org/article/10.1088/0026-1394/53/5/1204

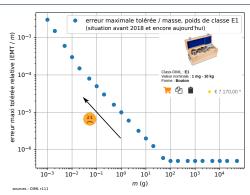
La situation avant 2019:

Les meilleurs comparateurs de masse sont à $\frac{u(m)}{m} \approx 10^{-9}$.

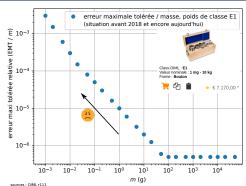


Mais tout ce qui précède montre que $\frac{u(m)}{m}$ plafonne à 10^{-8} . Guère de progrès envisageables.

La situation avant 2019:


Autre point faible : tout part du PIK à 1 kg.

La situation avant 2019:


⇒ descendre dans l'échelle des masses fait perdre en précision.

La situation avant 2019:

⇒ descendre dans l'échelle des masses fait perdre en précision.

Incertitudes sur les masses se répercutent sur :

- La mole (il faut peser 12 g de ¹²C).
- L'ampère et autres unités électriques

$$\|\vec{F}\| = \frac{\mu_0}{4\pi} \frac{2I^2}{d} \stackrel{\text{def}}{=} 2 \times 10^{-7} \, \text{N/m}$$

Outline

1. La métrologie et le SI

2. Comment définir une unité?

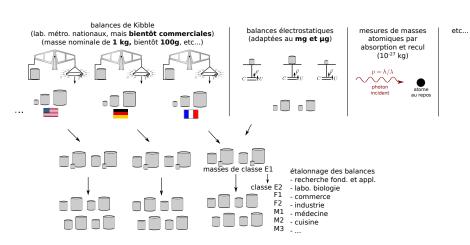
- 2.1 Le principe d'une définition
- 2.2 Exemples de formulations "concrètes"
- 2.3 Les définitions de 2018/19

3. Pourquoi et comment redéfinir une unité?

- 3.1 Le kg d'avant 2019
- 3.2 Le kg d'après 2019
- 3.3 Les caractéristiques d'une redéfinition

Le kg d'après 2019

- ⇒ Nécessité de redéfinir le kg.
- \Rightarrow Choix de $\{h\}$. (Et de $\{e\}$ pour l'Ampère.)

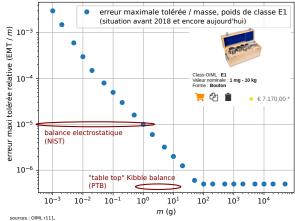

Quels gains?

- Métrologie électrique Θ . (car $R_K = h/e^2$ et $K_J = 2e/h$)
- Balances primaires (sans utiliser de masses de références) de Kibble.
- Plus d'artefacts matériel.

Le kg d'après 2019

La situation après 2019 : quels gains?

Le kg d'après 2019



La situation après 2019 : quels gains?

Electrostatic balance (INRIM) doi: 10.1109/TIM.2018.2890747

"table top" Kibble balance at NIST https://www.nist.gov/noac/technology/mass-force-and-acceleration/ tabletop-kibble-balance-gram-level-mass-realization

BIPM "Progress in the realization of the new definition of the kilogram". 2021

Outline

1. La métrologie et le SI

2. Comment définir une unité?

- 2.1 Le principe d'une définition
- 2.2 Exemples de formulations "concrètes"
- 2.3 Les définitions de 2018/19

3. Pourquoi et comment redéfinir une unité?

- 3.1 Le kg d'avant 2019
- 3.2 Le kg d'après 2019
- 3.3 Les caractéristiques d'une redéfinition

Le transfert d'incertitude : $m_{\text{PIK}} \leftrightarrow h$

Relation de la balance de Kibble : $m = \frac{\alpha f_1 f_2}{vg} h$.

- Avant la redéf. : sert à mesurer $h = \frac{\textit{vg}}{\alpha f_1 f_2} \underbrace{\textit{m}_{\mathsf{PIK}}}_{\mathsf{exact}}.$
- Après la redéf. : sert à mesurer $m_{\text{PIK}} = \frac{\alpha f_1 f_2}{vg} \underbrace{h}_{\text{exact}}$

Avant ou après, on mesure v, g, f_1 , f_2 , α de la même façon. Donc :

$$\left(\frac{u(h)}{h}\right)_{\text{avant redéf.}} = \left(\frac{u(m_{\text{PIK}})}{m_{\text{PIK}}}\right)_{\text{après redéf.}}$$

Comment définir une unité?

Le transfert d'incertitude

Même incertitude relative pour l'ancienne grandeur et pour la nouvelle.

SI juste avant 2019	SI juste après 2019
$m_{PIK} = 1\mathrm{kg}$	$m_{PIK} = 1,00000000(1)\mathrm{kg}$
$h = 6,626070150(69) \times 10^{-34}\mathrm{J\cdot s}$	$h = 6,62607015 \times 10^{-34}\mathrm{J\cdot s}$
$M_{^{12}\mathrm{C}} = 12\mathrm{g\cdot mol^{-1}}$	$M_{^{12}\mathrm{C}} = 12,0000000000(54)\mathrm{g\cdot mol^{-1}}$
$N_{A} = 6,022140758(62) \times 10^{23}\mathrm{mol}^{-1}$	$N_{A} = 6,02214076 \times 10^{23}\mathrm{mol}^{-1}$
$\mu_0/(4\pi) = 10^{-7} \mathrm{H} \cdot \mathrm{m}^{-1}$	$\mu_0/(4\pi) = 1,00000000000(23) imes 10^{-7}\mathrm{H\cdot m^{-1}}$
$e = 1,6021766341(83) \times 10^{-19}\mathrm{C}$	$e=1{,}602176634 imes10^{-19}\mathrm{C}$
$T_{\text{triple},H_2O} = 273,16 \text{K}$	$T_{\rm triple, H_2O} = 273,16000(10){ m K}$
$k_{\rm B} = 1{,}38064903(51) \times 10^{-23}{ m J\cdot K^{-1}}$	$k_{B} = 1{,}380649 \times 10^{-23}\mathrm{J\cdot K^{-1}}$

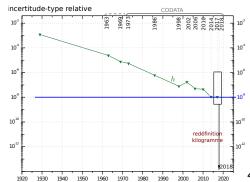
Conséquences du transfert d'incertitude

Ceci se généralise à toute pesée avec une balance de Kibble :

$$\left(\frac{u(m)}{m}\right)_{\text{après redéf.}} = \left(\frac{u(h)}{h}\right)_{\text{avant redéf.}}$$

 \Rightarrow La technologie qui permet la mesure de h est aussi celle qui permet les pesées dans le nouveau système.

Conséquences du transfert d'incertitude


Ceci se généralise à toute pesée avec une balance de Kibble :

$$\left(\frac{u(m)}{m}\right)_{\text{après redéf.}} = \left(\frac{u(h)}{h}\right)_{\text{avant redéf.}}$$

 \Rightarrow La technologie qui permet la mesure de h est aussi celle qui permet les pesées dans le nouveau système.

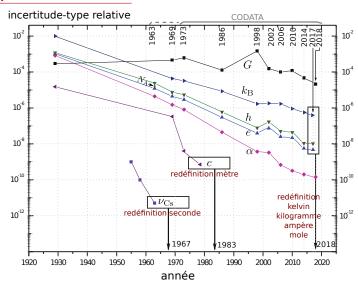
- \Rightarrow II faut une mesure de la constante h aussi précise que ce que permet l'ancien système pour les masses.
- \Rightarrow II faut

$$\left(rac{u(h)}{h}
ight)_{
m avant\ redéf.} pprox 10^{-8}.$$

Mai 2019 : on redéfinit

- Accord sur une valeur de h: $h = 6,626\,070\,150(69) \times 10^{-34}\,\mathrm{J\cdot s} \quad \rightarrow \quad h = 6,626\,070\,150 \times 10^{-34}\,\mathrm{J\cdot s}$
- Les balances de Kibble servent alors, non plus à mesurer h, mais à peser sans utiliser de masse de référence.

Mai 2019 : on redéfinit


- Accord sur une valeur de h: $h = 6,626\,070\,150(69) \times 10^{-34}\,\mathrm{J\cdot s} \quad \rightarrow \quad h = 6,626\,070\,150 \times 10^{-34}\,\mathrm{J\cdot s}$
- Les balances de Kibble servent alors, non plus à mesurer h, mais à peser sans utiliser de masse de référence.

Avoir attendu que $u(h)/h = 10^{-8}$ garantit :

- pas de changement perceptible, $(1\,{\rm kg})_{\rm avant}=(1\,{\rm kg})_{\rm après}$ à 10 µg près (10^{-8}) ;
- il existe une mise en pratique pour peser (Kibble) aussi précise que ce qui se faisait de mieux avant.

Idem pour les autres unités

Bilan

Redéfinir:

- Pourquoi : quand la nouvelle définition permet plus de précision.
- Comment : en mobilisant une même expérience, avant pour mesurer la future constante de définition, après pour mesurer dans la nouvelle unité.

(Puis d'autres expériences permettront, ensuite, d'autres mesures.)

Pour en savoir plus : *Physique et mesure*, Ellipses, 2022.

Question pour conclure : quelle sera la prochaine unité redéfinie ? Quand ?