Devoir Surveillé

Correction - Physique-chimie - DS 7

I Suspension de voiture

Première partie : suspension sans amortissement

- 1 Système {véhicule}. Bilan des forces :
 - Poids $\vec{P} = m\vec{g} = -mg\vec{e}_z$,
 - action du ressort : $\vec{F} = -k(l-l_0)\vec{u}_{\rm ext} = -k(z-l_0)\vec{e}_z$.

Le véhicule ne touche pas le sol, il n'y a donc pas de force de réaction du sol.

- 2 À l'équilibre la somme des forces est nulle, donc $\vec{P} + \vec{F} = \vec{0}$, d'où $-mg k(z_e l_0) = 0$, d'où $z_e = l_0 \frac{mg}{k}$.
- 3 Référentiel d'étude supposé galiléen, PFD appliqué au système {véhicule} : $m\vec{a}=\vec{F}+\vec{P}. \text{ Or ici } \vec{a}=\ddot{z}\vec{e_z}. \text{ Donc on a}$

$$m\ddot{z}\vec{e}_z = -mg\vec{e}_z - k(z - l_0)\vec{e}_z.$$

On projette sur $\vec{e_z}$, on réarrange :

$$\ddot{z} + \frac{k}{m}z(t) = \underbrace{-g + \frac{kl_0}{m}}_{z_e \times k/m}, \quad \text{d'où} \quad \boxed{\ddot{z} + \frac{k}{m}z(t) = \frac{k}{m}z_e.}$$

4 - Il s'agit de l'équation de l'oscillateur harmonique : on pose $\omega_0^2 = \frac{k}{m}$ pour avoir $\ddot{z} + \omega_0^2 z = \omega_0^2 z_e$.

La solution de l'équation homogène est $z_H(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$. Celle de l'équation particulière est $z_P = z_e$.

On a donc $z(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t) + z_e$.

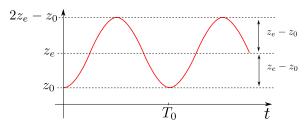
On a
$$\omega_0 = \sqrt{\frac{k}{m}} = 10 \,\text{rad/s}$$
 et $T_0 = \frac{2\pi}{\omega_0} = 0.63 \,\text{s.}$

5 - CI1 : $z(0) = z_0$. Or $z(0) = A + z_e$, donc $A = z_0 - z_e < 0$.

CI2 : $\dot{z}(0) = 0$. Or $\dot{z}(t) = -A\omega_0 \sin(\omega_0 t) + B\omega_0 \cos(\omega_0 t)$ et donc $\dot{z}(0) = B\omega_0$. Conclusion : B = 0.

On a donc $z(t) = (z_0 - z_e) \cos \omega_0 t + z_e$.

6 - Il s'agit de l'opposé d'un cosinus (car $z_0 - z_e < 0$), centré autour de z_e . La valeur minimale est à t = 0, avec $z(0) = z_0$.



Deuxième partie : suspension avec amortissement

7 -
$$F = hv$$
 donc l'unité de h est $[h] = \frac{[F]}{[v]} = \frac{N}{\text{m} \cdot \text{s}^{-1}}$.

Or par exemple F = ma donc $[F] = \text{kg} \cdot \text{m} \cdot \text{s}^{-2}$, donc $[h] = \frac{\text{kg} \cdot \text{m} \cdot \text{s}^{-2}}{\text{m} \cdot \text{s}^{-1}}$, soit donc $[h] = \text{kg} \cdot \text{s}^{-1}$.

- 8 Système {véhicule}. Bilan des forces :
 - Poids $\vec{P} = m\vec{g} = -mg\vec{e}_z$,
 - action du ressort : $\vec{F} = -k(l-l_0)\vec{u}_{\text{ext}} = -k(z-l_0)\vec{e}_z$,
 - amortisseur : $\vec{f} = -h\vec{v} = -h\dot{z}\vec{e}_z$.

À l'équilibre, $\vec{P} + \vec{F} + \vec{f} = \vec{0}$. Or comme $\vec{f} = \vec{0}$ à l'équilibre, on retrouve la même chose que dans la partie précédente, c'est-à-dire une côte à l'équilibre $z = z_e = l_0 - mg/k$.

9 - Référentiel d'étude supposé galiléen, PFD appliqué au système {véhicule} :

$$m\vec{a} = \vec{F} + \vec{P} + \vec{f}$$
. Or ici $\vec{a} = \ddot{z}\vec{e}_z$. Donc on a

$$m\ddot{z}\vec{e}_z = -mg\vec{e}_z - k(z - l_0)\vec{e}_z - h\dot{z}\vec{e}_z.$$

On projette sur \vec{e}_z , on réarrange :

$$\ddot{z} + \frac{h}{m}\dot{z} + \frac{k}{m}z(t) = \underbrace{-g + \frac{kl_0}{m}}_{z_e \times k/m}, \quad \text{d'où} \quad \boxed{\ddot{z} + \frac{h}{m}\dot{z} + \frac{k}{m}z(t) = \frac{k}{m}z_e.}$$

10 - Il s'agit d'une équation du second ordre. On calcule le discriminant de l'équation caractéristique :

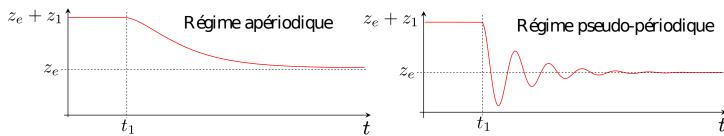
$$\Delta = \frac{h^2}{m^2} - 4\frac{k}{m} = \frac{h^2 - 4km}{m^2}.$$

Ainsi on a régime apériodique si $\Delta > 0$, si $h^2 > 4km$.

Régime critique pour $\Delta = 0$, donc pour $h^2 = 4km$.

Régime pseudo-périodique si $\Delta < 0$, si $h^2 < 4km$.

- 11 1 L'amortissement est d'abord en régime critique, donc $h^2 = 4km$. Ensuite le véhicule est chargé, donc m augmente, donc 4km devient supérieur à h^2 et on entre en régime pseudo-périodique.
 - **2 -** Il n'est pas souhaitable d'être en régime pseudo-périodique, car alors il y a de nombreuses oscillations. Il faut donc choisir h pour avoir $h^2 > 4km$ avec m la masse maximale du véhicule chargé.
- 12 Il s'agit d'étudier la réponse à un échelon, c'est-à-dire de spécifier la nature du régime transitoire de retour à l'équilibre. On a dans les deux cas une hauteur z_e par rapport à la route pour $t < t_1$ et aussi pour $t \gg t_1$.



Ceci correspond par exemple à la descente d'un trottoir, et le cas pseudo-périodique n'est pas souhaitable pour une voiture!

Troisième partie : régime forcé

- 13 $\vec{F} = -k(l-l_0)\vec{u}_{\rm ext} = -k(z-z_s-l_0)\vec{e}_z$, car la longueur du ressort est maintenant $l=z-z_s$.
- 14 Même démarche que précédemment, on aboutit à :

$$m\ddot{z}\vec{e}_z = -mg\vec{e}_z - k(z - z_s - l_0)\vec{e}_z - h(\dot{z} - \dot{z}_s)\vec{e}_z.$$

On projette sur \vec{e}_z et on réarrange :

$$\ddot{z} = -g - \frac{k}{m}(z - z_s - l_0) - \frac{h}{m}(\dot{z} - \dot{z}_s)$$

$$\ddot{z} + \frac{h}{m}\dot{z} + \frac{k}{m}z = \frac{kl_0}{m} - g + \frac{h}{m}\dot{z}_s + \frac{k}{m}z_s$$

$$\ddot{z} + \frac{h}{m}\dot{z} + \frac{k}{m}z = \frac{k}{m}z_e + \frac{h}{m}\dot{z}_s(t) + \frac{k}{m}z_s(t).$$

15 - On pose $z'(t) = z(t) - z_e$. On a donc $z(t) = z'(t) + z_e$, et en dérivant $\dot{z} = \dot{z}'$ et $\ddot{z} = \ddot{z}'$. On remplace donc dans l'équation ci-dessus :

$$\ddot{z}' + \frac{h}{m}\dot{z}' + \frac{k}{m}(z' + z_e) = \frac{k}{m}z_e + \frac{h}{m}\dot{z}_s(t) + \frac{k}{m}z_s(t),$$

d'où après simplification du terme en kz_e/m :

$$m\ddot{z}' + h\dot{z}' + kz' = h\dot{z}_s(t) + kz_s(t), \text{ et on pose } Y(t) = h\dot{z}_s(t) + kz_s(t).$$

16 - ⋆On passe l'équation précédente en régime complexe, donc :

$$m(j\omega^2)\underline{z}' + hj\omega\underline{z}' + k\underline{z}' = hj\omega\underline{z}_s + k\underline{z}_s.$$

On isole ensuite le rapport $\underline{z}'/\underline{z}_s$, donc :

$$(-m\omega^2 + hj\omega + k)\underline{z}' = (hj\omega + k)\underline{z}_s, \quad \text{d'où} \quad \frac{\underline{z}'}{\underline{z}_s} = \frac{hj\omega + k}{-m\omega^2 + hj\omega + k}.$$

Après division par m:

$$\frac{\underline{z}'}{\underline{z}_s} = \frac{k/m + j\omega h/m}{k/m - \omega^2 + j\omega h/m}, \text{ soit } \frac{\underline{z}'}{\underline{z}_s} = \frac{\omega_0^2 + 2\lambda j\omega}{\omega_0^2 - \omega^2 + 2\lambda j\omega}.$$

∗Il faut ensuite prendre le module de l'expression précédente :

$$H = \left| \frac{\underline{z'}}{\underline{z_s}} \right| = \frac{\sqrt{\omega_0^4 + 4\lambda^2 \omega^2}}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\lambda^2 \omega^2}}.$$

- 17 1 Pour $\omega \to 0$, on a H=1. Ainsi la masse m suit exactement les mouvements du sol, l'amortissement ne joue aucun rôle.
 - **2** Pour $\omega \to +\infty$, on a H=0. Ainsi la masse m n'oscille plus. L'amortissement joue donc le rôle de filtre passe-bas, en coupant les hautes fréquences.
 - **3 -** Le dénominateur est minimal lorsque la fonction $f(x) = (x^2 \omega_0^2)^2 + 4\lambda^2 x^2$ est minimale.

Or $f'(x) = 2 \times 2x(x^2 - \omega_0^2) + 8\lambda^2 x$, donc f'(x) = 0 est équivalent à x = 0 ou $4(x^2 - \omega_0^2) + 8\lambda^2 = 0$.

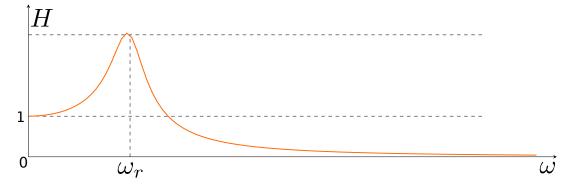
On exclut le cas x=0, donc il reste $4x^2=4\omega_0^2-8\lambda^2$, soit $x^2=\omega_0^2-2\lambda^2$, ce qui est positif par hypothèse, donc $\omega_r=\sqrt{\omega_0^2-2\lambda^2}$.

Lorsque $\omega = \omega_r$ le système est à la résonance. Il oscille alors avec une amplitude maximale, ce qui n'est pas bon pour la voiture!

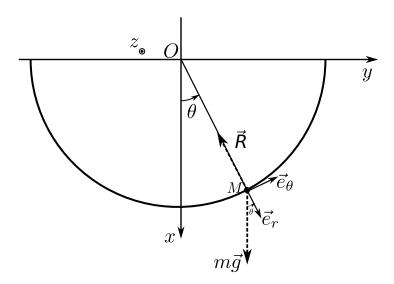
4 / 7

18 - Allure:

DS 7



II Snowbord dans un half-pipe



- 19 \star Référentiel terrestre galiléen. Coordonnées polaires.
 - * Bilan des forces sur le système {snowboarder} (cf schéma pour les projections) :
 - Poids $\vec{P} = mg \cos \theta \, \vec{e_r} mg \sin \theta \, \vec{e_\theta}$.
 - Réaction $\vec{N}=N\vec{e_r}$ avec N<0 (et pas de composante selon $\vec{e_\theta}$ car pas de frottements)
 - * Accélération : on part de la position et on dérive :
 - $-\overrightarrow{OM} = R\vec{e}_r$
 - $-\vec{v} = R\dot{\theta}\vec{e}_{\theta}$
 - $-\vec{a} = R\ddot{\theta}\vec{e}_{\theta} R\dot{\theta}^2\vec{e}_r$
 - \star PFD au système {snowboarder} :

$$m\vec{a} = \vec{P} + \vec{N},$$

d'où:

$$mR\ddot{\theta}\vec{e}_{\theta} - mR\dot{\theta}^{2}\vec{e}_{r} = mg\cos\theta\,\vec{e}_{r} - mg\sin\theta\,\vec{e}_{\theta} + R\vec{e}_{r}$$

Projection sur \vec{e}_{θ} : $mR\ddot{\theta} = -mg\sin\theta$, d'où :

$$\boxed{\ddot{\theta} + \frac{g}{R}\sin\theta = 0.}$$

20 - On a donc

$$\dot{\theta}\ddot{\theta} + \frac{g}{R}\dot{\theta}\sin\theta = 0,$$

d'où:

DS 7

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} \dot{\theta}^2 - \frac{g}{R} \cos \theta \right) = 0,$$

d'où

$$\frac{1}{2}\dot{\theta}^2 - \frac{g}{R}\cos\theta = \cot\theta$$

On obtient la constante en évaluant l'expression à t=0: on a $\dot{\theta}=0$ car pas de vitesse initiale et $\cos\theta=\cos\pi/2=0$, donc la constante est nulle.

On a donc finalement:

$$\frac{1}{2}\dot{\theta}^2 - \frac{g}{R}\cos\theta = 0, \quad \text{d'où} \quad \boxed{\dot{\theta}^2 = \frac{2g}{R}\cos\theta.}$$

21 - On utilise cette fois la projection sur $\vec{e_r}$ du PFD : $-mR\dot{\theta}^2 = mg\cos\theta + N$.

On isole N et on remplace $\dot{\theta}^2$ par l'expression obtenue à la question précédente :

$$N = -mg\cos\theta - mR\frac{2g}{R}\cos\theta$$
, soit $N = -3mg\cos\theta$.

Ainsi $\vec{N} = -3mg \cos \theta \vec{e_r}$, dont la norme est maximale en $\theta = 0$ (donc au centre du half-pipe) et vaut alors $N_{\text{max}} = 3mg$. À ce moment là, le snowboarder a la sensation de peser trois fois son propre poids.

22 - Ceci change la constante d'intégration : $\frac{1}{2}\dot{\theta}^2 - \frac{g}{R}\cos\theta = \csc = \frac{1}{2}\dot{\theta}_0^2$.

On a donc $-mR\dot{\theta}^2 = mg\cos\theta + N$ qui donne $N = -3mg\cos\theta - mR^2\dot{\theta}_0^2$.

La norme de \vec{N} est donc $\|\vec{N}\| = 3mg\cos\theta + mR^2\dot{\theta}_0^2$.

Elle est minimale lorsque le cosinus vaut -1, donc en $\theta=\pi$, c'est-à-dire au sommet du looping. Elle vaut alors $\lceil ||\vec{N}||_{\min}=mR^2\dot{\theta}_0^2-3mg. \rceil$

La vitesse initiale doit donc être telle que ceci est supérieur à 0, donc telle que $mR^2\dot{\theta}_0^2>$

3mg, soit donc $\dot{\theta}_0 > \sqrt{\frac{3g}{R}}$, et donc

$$v_0 = R\dot{\theta}_0 > \sqrt{3Rg} = 17 \,\text{m/s} = 62 \,\text{km/h}.$$

III Filtre ADSL

23 - Pour récupérer seulement les signaux téléphoniques il faut un filtre passe-bas.

Pour récupérer seulement les signaux informatiques il faut un filtre passe-haut.

On peut proposer une fréquence de coupure f_0 autour de $10\,\mathrm{kHz}$.

24 - À basses fréquences, les bobines sont équivalentes à des fils. On a donc s=0.

À hautes fréquences, les bobines sont équivalentes à des interrupteurs ouvert. On montre alors que le courant parcourant les résistances est nul. Celles-ci ne jouent donc aucun rôle. On a donc s=e.

Il s'agit donc d'un filtre passe-haut.

La sortie s doit donc correspondre au signal fourni à la box internet.

25 - a - Diviseur de tension :
$$\underline{s} = \underline{u} \times \frac{jL\omega}{R + jL\omega}$$
.

 ${f b}$ - Soit \underline{Z} l'impédance regroupant la résistance de droite et les deux bobines.

On a
$$\frac{1}{\underline{Z}} = \frac{1}{jL\omega} + \frac{1}{R + jL\omega}$$
, soit donc $\underline{Z} = \frac{jL\omega(R + jL\omega)}{R + 2jL\omega}$.

On réalise alors un schéma équivalent, et on voit avec un diviseur de tension que

l'on a
$$\underline{u} = \underline{e} \times \underline{\underline{Z}} + R$$
.

26 - a -
$$\star$$
 Hautes fréquences : $\underline{H} \sim \frac{-x^2}{-x^2} = 1$, $\underline{\underline{H} \sim 1}$.

$$\star$$
 Basses fréquences : $\underline{H} \sim \frac{-x^2}{1} = -x^2$, $\underline{\underline{H} \sim -x^2}$.

b - ★ Pour le gain :

On a $G_{\text{dB}} = 20 \log |\underline{H}|$.

À hautes fréquences on a donc $G_{\rm dB} \sim 20 \log(1) = 0$.

À basses fréquences $G_{\rm dB} \sim 20 \log |-x^2| = 40 \log x$, soit une pente de $+40 \, {\rm dB}$ par décade.

* Pour la phase :

$$\varphi = \arg(\underline{H}).$$

À hautes fréquences on a donc $\varphi \sim \arg(1) = 0$.

À basses fréquences $\varphi \sim \arg(-x^2) = \pi$ car il s'agit d'un réel négatif.

c - Voir allure d'un filtre passe-haut du deuxième ordre, sans résonance ici.

27 - *
$$|\underline{H}| = \frac{x^2}{\sqrt{(1-x^2)^2 + 9x^2}}$$
.

$$\star \arg(\underline{H}) = \arg(-x^2) - \arg(1 - x^2 + 3jx).$$

Or
$$arg(-x^2) = \pi$$
.

Et on a $arg(1-x^2+3jx) = \arctan \frac{3x}{1-x^2}$ si la partie réelle est positive, donc si x < 1,

et $arg(1 - x^2 + 3jx) = \pi + arctan \frac{3x}{1 - x^2}$ si la partie réelle est négative, donc si x > 1.

Donc finalement

$$\arg(\underline{H}) = \pi - \arctan \frac{3x}{1 - x^2} \text{ si } x < 1 \quad \text{et} \quad \arg(\underline{H}) = \arctan \frac{3x}{1 - x^2} \text{ si } x > 1.$$