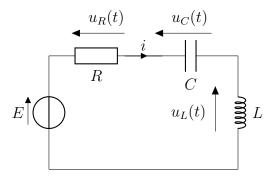
Correction - Physique-chimie - DS 6

I Production d'une tension sinusoïdale

On commence par refaire le schéma en indiquant les flèches de tension et de courant.



1.a – À $t=0^-$ on a $i(0^-)=0$ (car l'interrupteur est ouvert), $u_c(0^-)=0$ (car le condensateur est déchargé).

Or le courant traversant une bobine est nécessairement continu, donc $i(0^+) = i(0^-) = 0$, et la tension aux bornes d'un condensateur est nécessairement continue, donc $u_C(0^+) = u_C(0^-) = 0$.

Aux bornes de la résistance on a $u_R(0^+) = Ri(0^+) = 0$.

Enfin, la loi des mailles indique que pour tout t > 0 on a $u_R(t) + u_C(t) + u_L(t) = E$, et ceci est donc aussi valable à $t = 0^+$, ce qui donne alors $0 + 0 + u_L(0^+) = E$, soit $u_L(0^+) = E$.

1.b − ★ Loi des mailles : $E = Ri + u_C + u_L$, que l'on dérive pour pouvoir utiliser $\frac{\mathrm{d}u_C}{\mathrm{d}t} = i/C$.

On a alors $0 = R \frac{\mathrm{d}i}{\mathrm{d}t} + \frac{i}{C} + \frac{\mathrm{d}u_L}{\mathrm{d}t}$.

On remplace $\frac{\mathrm{d}i}{\mathrm{d}t}$ à l'aide de la relation $u_L = L \frac{\mathrm{d}i}{\mathrm{d}t}$: $0 = \frac{R}{L}u_L + \frac{i}{C} + \frac{\mathrm{d}u_L}{\mathrm{d}t}$.

On dérive encore pour pouvoir encore remplacer $\frac{\mathrm{d}i}{\mathrm{d}t}$ par $u_L/L:0=\frac{R}{L}\frac{\mathrm{d}u_L}{\mathrm{d}t}+\frac{u_L}{LC}+\frac{\mathrm{d}^2u_L}{\mathrm{d}t^2}$. Ce qui se réarrange en :

$$\frac{\mathrm{d}^2 u_L}{\mathrm{d}t^2} + \frac{R}{L} \frac{\mathrm{d}u_L}{\mathrm{d}t} + \frac{u_L}{LC} = 0. \tag{1}$$

$$\star$$
 On identifie donc $\omega_0 = \frac{1}{\sqrt{LC}}$, et $\frac{\omega_0}{Q} = \frac{R}{L}$, d'où $Q = \frac{1}{R}\sqrt{\frac{L}{C}}$.

 ${f 1.c}$ — Il faut écrire l'équation caractéristique associée à l'équation différentielle :

$$x^2 + \frac{\omega_0}{Q}x + \omega_0^2 = 0. {2}$$

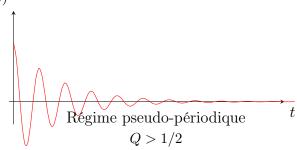
Le discriminant est $\Delta = \omega_0^2 \left(\frac{1}{Q^2} - 4 \right)$.

Il y a production d'oscillations seulement si le régime est pseudo-périodique, ce qui est le cas si le discriminant est négatif.

Donc si Q > 1/2, soit donc si $R < 2\sqrt{\frac{L}{C}}$.

A.N. : $R < 2.4 \,\mathrm{k}\Omega$.

 $\mathbf{1.d} - u_L(t)$



Le paramètre qui donne l'ordre de grandeur du nombre d'oscillations est le facteur de qualité Q. On a environ Q oscillations.

2 – On a la relation $u_L + u_C + u_R = E$, que l'on peut dériver : $\frac{du_L}{dt} + \frac{du_C}{dt} + \frac{du_R}{dt} = 0$.

On utilise ensuite $\frac{\mathrm{d}u_R}{\mathrm{d}t} = R\frac{\mathrm{d}i}{\mathrm{d}t} = \frac{R}{L}u_L$, $\frac{\mathrm{d}u_C}{\mathrm{d}t} = \frac{1}{C}i$, d'où en fait :

$$\frac{\mathrm{d}u_L}{\mathrm{d}t} + \frac{1}{C}i(t) + \frac{R}{L}u_L = 0.$$

Ceci est valable pour tout t, donc en particulier à la limite où $t \to 0^+$, donc :

$$\frac{\mathrm{d}u_L}{\mathrm{d}t}(0^+) = -\frac{1}{C}i(0^+) - \frac{R}{L}u_L(0^+).$$

Or
$$i(0^+) = 0$$
, et $u_L(0^+) = E$, donc on obtient $\frac{\mathrm{d}u_L}{\mathrm{d}t}(0^+) = -\frac{RE}{L}$.

Production d'une tension continue à partir d'une tension sinu-Ш soïdale

Schéma équivalent :

On a donc $u_s = u$.

4.

Schéma équivalent ci-contre. C'est un simple circuit RC:

$$i_C + i_R = 0$$

Loi des nœuds :

$$C\frac{\mathrm{d}u_s}{\mathrm{d}t} + \frac{u_s}{R} = 0$$

Forme canonique:

Lois de comportement :

$$C\frac{\mathrm{d}u_s}{\mathrm{d}t} + \frac{u_s}{R} = 0$$

$$\frac{\mathrm{d}u_s}{\mathrm{d}t} + \frac{1}{\tau}u_s = 0 \quad \text{avec} \quad \tau = RC.$$

La solution particulière est nulle, donc la solution est de la forme $u_s(t) = Ae^{-t/\tau}$.

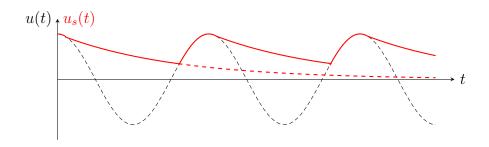
Enfin, $u_s(0^+) = u_s(0^-) = U_0$ d'après la continuité de la tension aux bornes d'un condensateur, donc :

$$u_s(t) = U_0 e^{-t/\tau}.$$

5. On trace d'abord u(t) (simple cosinus). L'énoncé indique que la diode est bloquée à t=0, donc d'après les questions précédentes u_s correspond à la décharge d'un condensateur. Ceci a lieu jusqu'à ce que $u_s(t)$ devienne égal à u(t).

À ce moment là, la diode devient passante. On a alors (questions précédentes) $u_s(t) = u(t)$. Ainsi $u_s(t)$ augmente jusqu'à atteindre un maximum, moment où elle redevient bloquée : on recommence alors comme au départ.

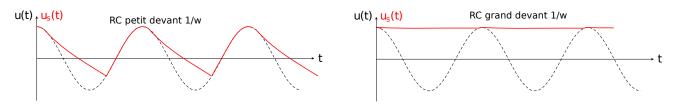
Remarque : la tension aux bornes d'un condensateur est une fonction continue, donc u_s garde la même valeur lorsque la diode change d'état.



6. Si $\tau = RC$ est très faible, alors lorsque la diode est bloquée la tension u_s tend très vite vers 0. On a donc un signal $u_s(t)$ qui n'est pas du tout constant.

Si τ est très élevé, alors la décroissance exponentielle est très lente, et le signal u_s reste quasiment constant, égal au maximum du signal u(t), donc égal à l'amplitude u_m : c'est justement ce qui était recherché.

On doit donc avoir $RC \gg 1/\omega$ afin que le signal u_s soit une tension continue proportionnelle à l'amplitude u_m .



III Système à deux ressorts

7 - Ressort de droite : $\vec{F}_1 = -k(l_1 - l_0)\vec{u}_{\text{ext}1}$, avec $l_1 = l_{\text{\'eq}} + x$ et $\vec{u}_{\text{ext}1} = \vec{e}_x$, donc $\vec{F}_1 = -k(x + l_{\text{\'eq}} - l_0)\vec{e}_x$. Ressort de gauche : $\vec{F}_2 = -k(l_2 - l_0)\vec{u}_{\text{ext}2}$, avec $l_2 = l_{\text{\'eq}} - x$ et $\vec{u}_{\text{ext}2} = -\vec{e}_x$, donc $\vec{F}_2 = k(-x + l_{\text{\'eq}} - l_0)\vec{e}_x$.

- 8 On choisit un axe y vers le haut.
 - * Bilan des forces sur la masse :
 - Poids $\vec{P}=m\vec{g}=-mg\vec{e}_y$. Réaction de la tige qui maintient la masse : $\vec{R}=R\vec{e}_y$.
 - Forces des deux ressorts : $\vec{F}_1 + \vec{F}_2 = -k(x + l_{\text{\'eq}} l_0)\vec{e}_x + k(-x + l_{\text{\'eq}} l_0)\vec{e}_x = -2kx\vec{e}_x$.

On a aussi l'accélération $\vec{a} = \ddot{x}\vec{e}_x$ (mouvement astreint à l'axe Ox).

 $\star\,$ Principe fondamental de la dynamique, dans un référentiel galiléen, à la masse :

$$m\vec{a} = \sum \vec{F} \quad \text{donc} \quad m\ddot{x}\vec{e_x} = -mg\vec{e_y} + R\vec{e_y} - 2kx\vec{e_x}.$$

On projette sur \vec{e}_x : il reste $m\ddot{x} = -2kx$. On a donc $\ddot{x} + \frac{2k}{m}x = 0$.

9 - Un oscillateur harmonique obéit à une équation du type $\ddot{x} + \omega_0^2 x = 0$, ce qui est bien le cas ici, et on identifie $\omega_0 = \sqrt{k/m}$, donc $T_0 = 2\pi/\omega_0 = 2\pi\sqrt{m/k}$.

10 - \star Solution particulière nulle, donc la solution générale est : $x(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$.

* Condition initiale $1: x(0) = x_0$.

D'après la solution : x(0) = A. Donc $A = x_0$.

* Condition initiale $2 : \dot{x}(0) = 0$.

D'après la solution : $\dot{x}(t) = -A\omega_0 \sin(\omega_0 t) + B\omega_0 \cos(\omega_0 t)$, donc $\dot{x}(0) = B\omega_0$.

Ceci doit être nul, donc B = 0.

 \star Conclusion : $x(t) = x_0 \cos \omega_0 t$.

 \star Allure : cosinus partant de x_0 .

Portrait de phase : ellipse partant de $x=x_0$ et $\dot{x}=0$, tournant dans le sens horaire. Vitesse maximale en $\pm \omega_0 x_0$.

11 - * Pour les ressorts : $E_p = \frac{1}{2}k(l_1 - l_0)^2 + \frac{1}{2}k(l_2 - l_0)^2 = \frac{1}{2}k(l_{\text{\'eq}} + x - l_0)^2 + \frac{1}{2}k(l_{\text{\'eq}} - x - l_0)^2$.

- * Énergie cinétique : $E_c = \frac{1}{2}m\dot{x}^2$.
- $\star\,$ L'énergie potentielle de pesanteur est constante.
- \Rightarrow Énergie mécanique : $E_m = E_p + E_c$.

12 - On a négligé tout frottement, donc l'énergie mécanique se conserve. On a donc $\frac{\mathrm{d}E_m}{\mathrm{d}t} = 0$. Calculons cette dérivée :

$$\frac{\mathrm{d}E_m}{\mathrm{d}t} = k(l_{\text{\'eq}} + x - l_0)\dot{x} + k(l_{\text{\'eq}} - x - l_0)(-\dot{x}) + m\dot{x}\ddot{x}$$
$$= 2kx\dot{x} + m\dot{x}\ddot{x}$$

Ceci étant nul, on peut simplifier \dot{x} , et il reste $m\ddot{x} + 2kx = 0$, ce qui est bien l'équation du mouvement trouvée plus haut.

13 - On utilise $2\pi f = \omega_0 = \sqrt{k'/m}$ pour isoler $k' = m^2 (2\pi f)^2 = 1.6 \times 10^3 \,\text{N/m}$.

Pour la masse de l'atome de carbone on a utilisé $m = \frac{M_C}{N_A}$.

14 - L'énergie potentielle est $E_p = \frac{1}{2}k'(l-l_0)^2$, soit en prenant $l=2l_0$: $E_p = \frac{1}{2}k'l_0^2$.

A.N.:
$$E_p = 1.9 \times 10^{-17} \,\text{J}.$$

Ceci vaut pour une molécule. Pour avoir l'énergie en J/mol, on multiplie par le nombre de molécules dans une mole, donc $E = E_p \times N_A = 11.4 \, \mathrm{MJ/mol.}$