Partie IV: Optique

Chapitre 2

# Fiche de cours - Interférences à deux ondes

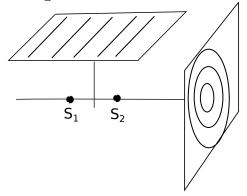
Ceci est un exemple <u>minimal</u> de fiche de cours concernant ce chapitre. Je vous encourage à vous en inspirer pour faire votre propre fiche (écrire votre fiche vous aidera à retenir), qui pourra être plus complète, plus personnelle, avec des schémas, des couleurs, des flèches...

### ► Conditions pour avoir des interférences :

Les deux sources doivent être :

- ⇒ synchrones (même pulsation),
- ⊳ cohérentes (elles émettent les mêmes trains d'onde).

### ► Formule de Fresnel :


$$I(M) = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos\left(\frac{2\pi}{\lambda_0} \delta_M\right),$$

avec  $\delta_M$  la différence de marche au point M:  $\delta_M = (SS_1M) - (SS_2M)$ , et  $\lambda_0$  la longueur d'onde dans le vide.

Remarques:

$$ightharpoonup$$
 Si  $I_1 = I_2$ :  $I(M) = 2I_0 \left[ 1 + \cos \left( \frac{2\pi}{\lambda_0} \delta_M \right) \right]$ .

### ► Figure d'interférence :

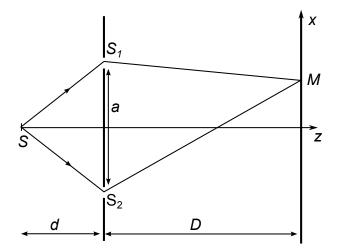


#### ightharpoonup Ordre d'interférence p:

On définit :

$$p = \frac{\Delta \varphi}{2\pi} = \frac{\delta_M}{\lambda_0}.$$

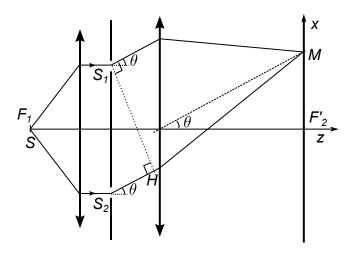
- $\triangleright$  Interférences constructives  $(I = I_{\text{max}})$  si  $p = k \in \mathbb{Z}$ .
- ightharpoonup Interférences destructives  $(I=I_{\min})$  si  $p=k+\frac{1}{2},\,k\in\mathbb{Z}.$






 $\,\rhd\,$  Le contraste de la figure d'interférence est  $C=\frac{I_{\max}-I_{\min}}{I_{\max}+I_{\min}}.$   $C\in[0,1].$ 

## ▶ Dispositif des trous d'Young, montage sans lentille après les trous :


Savoir schématiser ce montage, puis trouver l'expression de la différence de marche  $\delta_M$  en fonction de la position x du point M sur l'écran, et en déduire l'expression de l'intensité I(x). En déduire également l'interfrange i.



 $\rightarrow$  On utilise le théorème de Pythagore puis un développement limité.

### ▶ Dispositif des trous d'Young, montage avec lentille après les trous :

Savoir schématiser ce montage, puis trouver l'expression de la différence de marche  $\delta_M$  en fonction de la position x du point M sur l'écran, et en déduire l'expression de l'intensité I(x). En déduire également l'interfrange i.



 $\rightarrow$  On utilise le théorème de Malus pour une source en S, puis pour une source en M.

# ightharpoonup Interfrange i:

L'interfrange *i* s'identifie à partir de la forme  $\cos\left(\frac{2\pi}{i}x + \varphi_0\right)$ .

C'est la période spatiale de la figure d'interférence, donc la distance entre deux maxima d'intensité.