Correction - TD - Régime sinusoïdal forcé

I Impédances équivalentes

 ${\bf 1}$ - Ici L et C_2 sont en parallèles. Ils sont donc équivalents à une impédance \underline{Z}_2 donnée par

$$\frac{1}{\underline{Z}_2} = \frac{1}{\mathrm{j}L\omega} + \frac{1}{\frac{1}{\mathrm{j}C_2\omega}} = \frac{1}{\mathrm{j}L\omega} + \mathrm{j}C_2\omega.$$

Donc

$$\underline{Z}_2 = \frac{1}{\frac{1}{\mathrm{i}L\omega} + \mathrm{j}C_2\omega}.$$

Enfin, l'impédance équivalente totale est

$$\underline{Z}_{\text{\'eq}} = \underline{Z}_{C_1} + \underline{Z}_2 = \frac{1}{\mathrm{j}C_1\omega} + \frac{1}{\frac{1}{\mathrm{j}L\omega} + \mathrm{j}C_2\omega}.$$

 ${\bf 2}$ - Le R et le C de gauche sont en parallèles, donc équivalents à une impédance \underline{Z}_2 donnée par

$$\frac{1}{\underline{Z}_2} = \frac{1}{R} + \frac{1}{\frac{1}{\mathrm{i}C\omega}} = \frac{1}{R} + \mathrm{j}C\omega = \frac{1 + \mathrm{j}RC\omega}{R}.$$

Donc

$$\underline{Z}_2 = \frac{R}{1 + jRC\omega}.$$

Enfin, l'impédance équivalente totale est

$$\underline{Z}_{\text{\'eq}} = R + \frac{1}{jC\omega} + \frac{R}{1 + jRC\omega}.$$

Il Suite de l'EC6 : caractéristiques de la résonance en intensité du RLC série

1.

2.

3.

III Résonance en tension du circuit RLC série

1 - $u_c(t) = U_{C0}\cos(\omega t + \varphi)$ est représenté par $\underline{u}_c = \underline{U}_{C0}\mathrm{e}^{\mathrm{j}\omega t}$ avec $\underline{U}_{C0} = U_{C0}\mathrm{e}^{\mathrm{j}\varphi}$.

2 - On applique un diviseur de tension :

$$\begin{split} \underline{U}_{C0} &= \underline{E}_m \times \frac{\underline{Z}_C}{\underline{Z}_C + \underline{Z}_L + R} \\ &= \underline{E}_m \times \frac{1/(\mathrm{j}C\omega)}{1/(\mathrm{j}C\omega) + \mathrm{j}L\omega + R} \\ &= \frac{E_0}{1 + (\mathrm{j}L\omega)(\mathrm{j}C\omega) + R\mathrm{j}C\omega} \\ &= \frac{E_0}{1 - LC\omega^2 + R\mathrm{j}C\omega} \end{split}$$

On souhaite identifier ceci avec la forme suivante :

$$\underline{U}_{C0} = \frac{E_0}{1 - x^2 + j\frac{x}{Q}} = \frac{E_0}{1 - \frac{\omega^2}{\omega_0^2} + j\frac{\omega}{Q\omega_0}}.$$

On doit donc avoir $\frac{\omega^2}{\omega_0^2}=LC\omega^2,$ d'où $\boxed{\omega_0=\frac{1}{\sqrt{LC}}};$

et j $\frac{\omega}{Q\omega_0}=R$ j $C\omega$, d'où après manipulations $Q=\frac{1}{R}\sqrt{\frac{L}{C}}$.

3 - On en déduit
$$U_{C0} = |\underline{U}_{C0}| = \frac{E_0}{\sqrt{(1-x^2)^2 + \frac{x^2}{Q^2}}}.$$

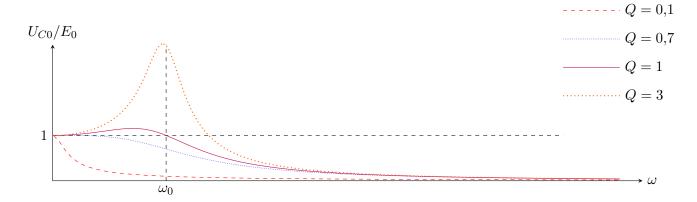
Il y a résonance si $U_{C0}(x)$ admet un maximum pour une valeur de $x \in]0,+\infty[$. Le numérateur ne dépendant pas de x, ceci est équivalent au fait que le dénominateur admette un minimum. On regarde donc si la dérivée de $g(x) = (1-x^2)^2 + \frac{x^2}{Q^2}$ s'annule.

On trouve que c'est toujours le cas en x=0 (c'est alors un maximum ou un minimum, mais ce n'est jamais la résonance car c'est en 0), et qu'il y a une seconde possibilité en $x_r=\sqrt{1-\frac{1}{2Q^2}}$, mais qui existe seulement si $Q>\frac{1}{\sqrt{2}}$.

La résonance a donc lieu seulement si $Q > \frac{1}{\sqrt{2}}$, à la pulsation $\omega_r = \omega_0 \sqrt{1 - \frac{1}{2Q^2}}$.

La tension à la résonance vaut $U_{C_{\max}} = U_{C0}(x_r) = \frac{QE_0}{\sqrt{1 - \frac{1}{4Q^2}}}$.

On a l'allure suivante :



4 - On a
$$\varphi = \arg(E_0) - \arg\left((1 - x^2) + j\frac{x}{Q}\right) = -\arg\left((1 - x^2) + j\frac{x}{Q}\right)$$
.

On ne peut pas utiliser l'expression avec l'arctangente car la partie réelle, $1-x^2$, est parfois négative et parfois positive.

Astuce: on factorise par j:

$$\varphi = -\arg\left[(1 - x^2) + j\frac{x}{Q} \right]$$

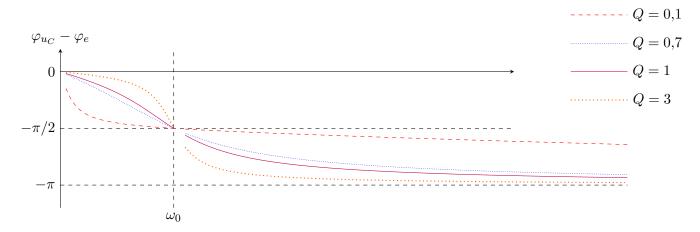
$$= -\arg\left[j\left(-j(1 - x^2) + \frac{x}{Q} \right) \right]$$

$$= -\arg j - \arg\left(-j(1 - x^2) + \frac{x}{Q} \right)$$

$$= -\frac{\pi}{2} - \arctan\frac{-(1 - x^2)}{x/Q}$$

$$\varphi = \arctan\frac{Q(1 - x^2)}{x} - \frac{\pi}{2}$$

On a l'allure suivante :



5 - On a montré que la pulsation de résonance est $\omega_r = \omega_0 \sqrt{1 - \frac{1}{2Q^2}} < \omega_0$.

La question est de trouver Q pour avoir $\omega_r = 0.99\omega_0$.

Ceci s'écrit aussi :
$$\sqrt{1-\frac{1}{2Q^2}}=0,99.$$

Soit donc
$$1 - \frac{1}{2Q^2} = 0.99^2$$
, soit donc $\frac{1}{2Q^2} = 1 - 0.99^2$,

soit donc
$$2Q^2 = \frac{1}{1 - 0.99^2}$$
,

d'où
$$Q = \sqrt{\frac{1}{2(1 - 0.99^2)}} = 5.$$

IV Détermination d'une inductance

$$\mathbf{1} - \underline{Z} = R + r + \mathrm{j}L\omega + \frac{\frac{1}{\mathrm{j}C\omega}R}{\frac{1}{\mathrm{j}C\omega} + R} = R + r + \mathrm{j}L\omega + \frac{R}{1 + \mathrm{j}RC\omega}.$$

2 - Sur la voie X, il s'agit de la tension u_Z aux bornes de \underline{Z} .

Sur la voie Y, il s'agit de $u_R = Ri$, donc d'un signal proportionnel au courant i_z qui traverse \underline{Z} .

Or $\underline{u}_Z = \underline{Z} \underline{i}_Z$, donc ces deux signaux sont en phase si et seulement si \underline{Z} est réelle. Donc si sa partie imaginaire est nulle.

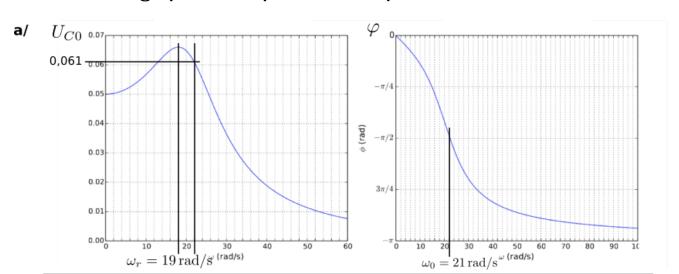
Or
$$\underline{Z} = R + r + jL\omega + \frac{R}{1 + jRC\omega} = R + r + jL\omega + \frac{R(1 - jRC\omega)}{1 + (RC\omega)^2}$$
.

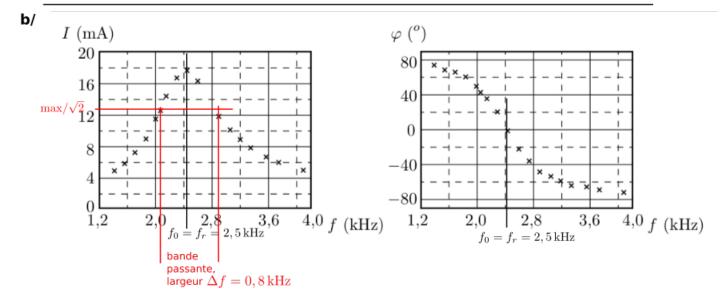
Donc
$$\operatorname{Im}(\underline{Z}) = L\omega - \frac{R^2 C\omega}{1 + (RC\omega)^2}.$$

On a donc
$$L = \frac{R^2C}{1 + (RC\omega)^2}.$$

Avec $\omega = 2\pi f$ et les valeurs de l'énoncé, on obtient $L = 44\,\mathrm{mH}$.

Étude de graphes d'amplitude et de phase





* Cas a/: c'est une résonance en tension.

On a les expressions (cf cours, pas à connaître par cœur du tout mais à aller chercher dans le poly):

$$U_{C0} = |\underline{U}_{C0}| = \frac{E_0}{\sqrt{(1-x^2)^2 + \frac{x^2}{Q^2}}} \quad \text{et} \quad \boxed{\varphi = \varphi_{u_C} - \varphi_e = \arctan\frac{Q(1-x^2)}{x} - \frac{\pi}{2}}.$$

- Concernant la pulsation propre : la phase vaut $-\pi/2$ à la pulsation propre (x=1). On lit donc sur le graphe de phase la pulsation propre $\omega_0 = 21 \,\mathrm{rad/s}$.
- Concernant ω_r : c'est là où l'amplitude est maximale. On lit donc $\omega_r = 19 \,\text{rad/s}$. Concernant Q: on a $U_{C0}(x=1) = U_{C0}(x=0) \times Q$, on a donc $Q = \frac{U_{C0}(x=1)}{U_{C0}(x=0)} = \frac{0,061}{0,05} = 1,2$.
- * Cas b/ : c'est une résonance en intensité.

On a les expressions (cf poly):

$$\boxed{I_0 = |\underline{I}_0| = \frac{E_0/R}{\sqrt{1 + Q^2 \left(x - \frac{1}{x}\right)^2}}} \text{ et } \boxed{\varphi = \varphi_i - \varphi_e = -\arctan\left(Q\left(x - \frac{1}{x}\right)\right).}$$

- On résonne avec les fréquences étant donné que l'abscisse du graphique est en fréquence.
- On sait que la résonance a lieu à la fréquence propre : $f_0 = f_r$. C'est là où l'amplitude est maximale, et aussi là où le déphasage est nul, ce qui se détermine facilement sur le graphique : $f_0 = f_r = 2.5 \,\mathrm{kHz}$.
- Concernant Q, il faut utiliser la bande-passante et la formule $Q = \frac{f_0}{\Delta f}$ (cf construction sur le graphique). A.N. : Q = 3,1.

VI Antenne émettrice

 ${f 1}$ - On regroupe la résistance, la bobine et le condensateur, qui sont tous les trois en parallèles, en une impédance équivalente \underline{Z} donnée par :

$$\frac{1}{\underline{Z}} = \frac{1}{R} + \frac{1}{\mathrm{j}L\omega} + \mathrm{j}C\omega = \frac{\mathrm{j}L\omega + R + (\mathrm{j}C\omega)R(\mathrm{j}L\omega)}{\mathrm{j}RL\omega}.$$

D'où

$$\boxed{\underline{Z} = \frac{\mathrm{j}RL\omega}{\mathrm{j}L\omega + R - RLC\omega^2}}.$$

2 - On a $\frac{\underline{U}_0}{\underline{I}_0} = \underline{Z}$, donc $\underline{U}_0 = \underline{Z} \times \underline{I}_0 = \underline{Z} \times I_0$ (car $\underline{I}_0 = I_0$, il n'y a pas de phase à l'origine), donc :

$$\underline{U}_0 = \frac{I_0 \, jRL\omega}{jL\omega + R - RLC\omega^2}.$$

Pour la suite, il est plus futé de tout diviser par j $L\omega$ afin de retrouver une fonction du type de celle pour le RLC série :

$$\underline{U}_0 = \frac{RI_0}{1 + \frac{R}{jL\omega} + jRC\omega}$$

$$\underline{U}_0 = \frac{RI_0}{1 + jR\left(C\omega - \frac{1}{L\omega}\right)}.$$

3 - On a
$$U = |\underline{U}_0| = \frac{RI_0}{\sqrt{1 + R^2 \left(C\omega - \frac{1}{L\omega}\right)^2}}$$
.

Il faut chercher le maximum. Il est atteint lorsque le dénominateur est minimum (car pas de ω au numérateur). C'est ici assez simple : c'est lorsque $\left(C\omega-\frac{1}{L\omega}\right)^2=0$, donc pour $\omega=\frac{1}{\sqrt{LC}}$.

C'est donc cette pulsation là qu'il faut utiliser.

4 - On définit $\omega_0 = \frac{1}{\sqrt{LC}}$ et $x = \omega : \omega_0$. On a alors

$$C\omega - \frac{1}{L\omega} = \frac{C\sqrt{L}\omega}{\sqrt{L}} - \frac{\sqrt{C}}{\sqrt{C}L\omega}$$

$$= \frac{\sqrt{C}\sqrt{C}\sqrt{L}\omega}{\sqrt{L}} - \frac{\sqrt{C}}{\sqrt{C}\sqrt{L}\sqrt{L}\omega}$$

$$= \frac{\sqrt{C}\omega}{\sqrt{L}\omega_0} - \frac{\sqrt{C}\omega_0}{\sqrt{L}\omega}$$

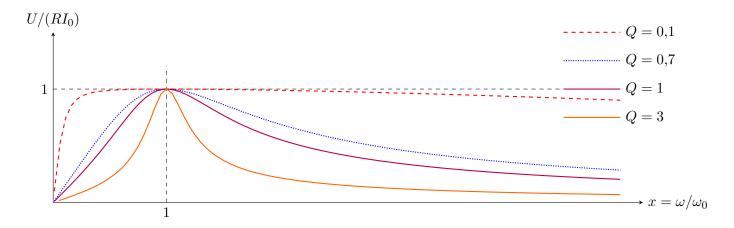
$$= \frac{\sqrt{C}}{\sqrt{L}}\left(x - \frac{1}{x}\right)$$

D'où

$$\underline{U}_0 = \frac{RI_0}{1 + jR\frac{\sqrt{C}}{\sqrt{L}}\left(x - \frac{1}{x}\right)}.$$

On pose
$$Q = R \frac{\sqrt{C}}{\sqrt{L}}$$
. On a

$$U = \frac{RI_0}{\sqrt{1 + Q^2 \left(x - \frac{1}{x}\right)^2}}.$$



5 - Il faut trouver l'expression des pulsations de coupures ω_{c1} et ω_{c2} .

On note $x_1 = \omega_{c1}/\omega_0$ et $x_2 = \omega_{c2}/\omega_0$ les pulsations réduites correspondantes.

Elles sont solutions de
$$U(x) = \frac{U_{\text{max}}}{\sqrt{2}} = \frac{RI_0}{\sqrt{2}}$$

Ceci est équivalent à $Q^2\left(x-\frac{1}{x}\right)^2=1$, soit tous calculs faits et en éliminant les solutions négatives, pour

$$x_1 = -\frac{1}{2Q} + \frac{1}{2}\sqrt{4 + \frac{1}{Q^2}}, \text{ et } x_2 = \frac{1}{2Q} + \frac{1}{2}\sqrt{4 + \frac{1}{Q^2}}.$$

La largeur de la bande passante est $\Delta x = x_2 - x_1 = \frac{1}{Q}$, soit encore $\Delta \omega = \frac{\omega_0}{Q}$.

Remarque : On a $\varphi = \pm \pi/4$ pour x_1 et x_2 .

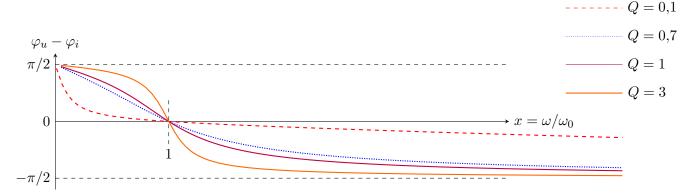
On a
$$A_c = Q = R \frac{\sqrt{C}}{\sqrt{L}} = 5,2.$$

L'acuité augmente avec la résistance. C'est normal car la résistance est en parallèle avec le reste du circuit, donc une absence de résistance signifie ici une résistance R infinie (pour qu'aucun courant ne la traverse).

${\bf 6}$ - Le déphasage entre u(t) et i(t) est donné par l'argument de $\underline{U}_0.$

En effet, $\varphi_u - \varphi_i = \varphi_u$ car $\varphi_i = 0$, et $\varphi_u = \arg(\underline{U}_0)$.

$$\varphi = -\arctan\left(Q\left(x - \frac{1}{x}\right)\right).$$



Remarque : le déphasage φ est nul à la résonance. u(t) et i(t) sont en phase.

VII Étude d'un circuit en RSF

$$1 - \underline{Z} = \frac{\underline{Z_1 Z_2}}{\underline{Z_1} + \underline{Z_2}} = \frac{(jL\omega + R)\left(\frac{1}{jC\omega} + R\right)}{2R + \frac{1}{jC\omega} + jL\omega}.$$

$$\mathbf{2} \text{ - On a } \underline{u} = \underline{Z}\,\underline{i} \text{ et } \underline{u} = \underline{Z_1}\,\underline{i_1}, \text{ donc } \underline{i_1} = \frac{\underline{u}}{\underline{Z_1}} = \frac{\underline{Z}\,\underline{i}}{\underline{Z_1}}$$

$$\Rightarrow \boxed{\underline{i_1} = \frac{\underline{Z}\,\underline{i}}{R + \mathrm{j}L\omega}.}$$

De même, $\underline{u} = \underline{Z}\underline{i}$ et $\underline{u} = \underline{Z_2}\underline{i_2}$, donc $\underline{i_2} = \frac{\underline{u}}{\underline{Z_2}} = \frac{\underline{Z}\underline{i}}{\underline{Z_2}}$.

$$\Rightarrow \boxed{\underline{i_2} = \frac{\underline{Z}\,\underline{i}}{R + \frac{1}{\mathrm{j}C\omega}}.}$$

Remarque : avec un diviseur de courant, on a : $\underline{i}\underline{i}(t) = \underline{i}(t) \times \frac{\frac{1}{jC\omega} + R}{\underline{Z}_1 + \underline{Z}_2}$ et $\underline{i}\underline{1}(t) = \underline{i}(t) \times \frac{\underline{j}L\omega + R}{\underline{Z}_1 + \underline{Z}_2}$.

3 - \star Si $\underline{I_1}/\underline{I_2} = j\alpha$ avec $\alpha \in \mathbb{R}$, alors $\arg(\underline{I_1}/\underline{I_2}) = \pm \pi/2$.

Or $\arg(\underline{I_1}/\underline{I_2}) = \varphi_1 - \varphi_2$ est justement le déphasage de i_1 par rapport à i_2 , d'où le résultat.

$$\star \text{ En utilisant q2} : \frac{\underline{I_1}}{\underline{I_2}} = \frac{\underline{i_1}}{\underline{i_2}} = \frac{\frac{1}{\mathrm{j}C\omega} + R}{\mathrm{j}L\omega + R} = \frac{(-\mathrm{j}L\omega + R)\left(\frac{1}{\mathrm{j}C\omega} + R\right)}{(\mathrm{j}L\omega + R)(-\mathrm{j}L\omega + R)} = \frac{R^2 - \frac{L}{C} - \mathrm{j}R\left(L\omega + \frac{1}{C\omega}\right)}{(L\omega)^2 + R^2}.$$

C'est un imaginaire pur lorsque $R^2 = \frac{L}{C}$.

$$\text{Remarque}: \frac{i_1}{\underline{i_2}} = \frac{\underline{I_1} \mathrm{e}^{\mathrm{j}\omega t}}{\underline{I_2} \mathrm{e}^{\mathrm{j}\omega t}} = \frac{\underline{I_1}}{\underline{I_2}}.$$

4 - Cette fois, ce sont les modules qui doivent être égaux : $|\underline{I_1}|=|\underline{I_2}|.$

Avec q2, ceci s'écrit aussi $\frac{1}{(C\omega)^2} + R^2 = (L\omega)^2 + R^2$, soit donc $\frac{1}{C\omega} = L\omega$, soit donc $\omega^2 = \frac{1}{LC}$.