Devoir Surveillé

Correction - Physique-chimie - DS 5

I Chute sur corde en escalade

I.1 Étude simplifiée

- 1 La vitesse maximale est atteinte à l'instant 2.
 - Système {grimpeur+corde}. Bilan des forces entre 1 et 2 : uniquement le poids. C'est une force conservative $(E_p = mgz)$ et donc l'énergie mécanique se conserve.
 - Au point 1, l'énergie mécanique du grimpeur est $E_{m1} = E_c + E_p = 0 + mgh$.
 - Au point 2, elle devient $E_{m2} = \frac{1}{2}mv_2^2 + 0$.
 - On a donc $mgh = \frac{1}{2}mv_2^2$, d'où $v_2 = \sqrt{2gh} = 1.0 \times 10 \,\mathrm{m/s}$.
- **2 -** Système {grimpeur+corde}. Entre 1 et 2 seul le poids intervient, mais entre 2 et 3 la corde se tend et il faut ajouter l'énergie potentielle élastique $E_p = \frac{1}{2}k\Delta l^2$ avec Δl l'allongement de la corde.
 - Bilan entre les instants 1 et 3 :
 - En 1, $E_{m1} = E_c + E_p = mgh$.
 - En 3, vitesse nulle et $E_{m3} = \frac{1}{2}k\Delta l^2 + mg(-\Delta l)$.
 - On a donc:

$$mgh = \frac{1}{2}k\Delta l^2 + mg(-\Delta l),$$
 soit $\Delta l^2 - \frac{2mg}{k}\Delta l - \frac{2mgh}{k} = 0.$

3 - En négligeant l'avant dernier terme devant le dernier (car $\Delta l \ll h$), on obtient

$$\Delta l = \sqrt{\frac{2mgh}{k}}.$$

4 - La force exercée est, en norme : $F_{\max} = k\Delta l = \sqrt{2mgh\,k} = \sqrt{2mgh\,\frac{\alpha}{L_0}}$,

soit
$$F_{\text{max}} = \sqrt{2mg\alpha f}$$
.

On a $F_{\text{max}} = \sqrt{2 \times 100 \times 10 \times 5 \times 10^4 \times 1} = 10 \, \text{kN}$, ce qui est inférieur à la limite de 12 kN.

- **5 -** f = 1/0.5 = 2 dans le premier cas, f = 4/8 = 0.5 dans le second. Le premier cas est donc plus dangereux car F_{max} est en \sqrt{f} , donc deux fois plus importante dans le cas 1.
- **6** Dans l'ordre : f=0, 1 et 2. Le dernier cas est donc dangeureux pour la corde, et pour le grimpeur car $F_{\rm max}$ proche des $12\,{\rm kN}$.

I.2 Expression complète de F_{max}

7 - On a un trinome. Discriminant $\Delta = \frac{4m^2g^2}{k^2} + 4\frac{2mgh}{k}.$

Solutions: $\Delta l = \frac{mg}{k} \pm \sqrt{\frac{m^2g^2}{k^2} + \frac{2mgh}{k}}$, et seule celle avec le + est positive.

8 - Puis

$$F_{\text{max}} = k\Delta l = mg + k\sqrt{\frac{m^2g^2}{k^2} + \frac{2mgh}{k}}$$

$$= mg + \sqrt{m^2g^2 + 2kmgh}$$

$$= mg + mg\sqrt{1 + \frac{2kmgh}{m^2g^2}}$$

$$= mg\left(1 + \sqrt{1 + \frac{2kh}{mg}}\right)$$

$$F_{\text{max}} = mg\left(1 + \sqrt{1 + \frac{2\alpha f}{mg}}\right).$$

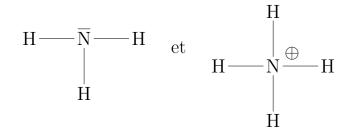
9 - Avec la forumle approchée on sous-estime la force de choc, d'un facteur environ 36% pour f=1.

Il Teneur en azote d'un engrais

PT B-chimie 2020

10 - Azote, $Z = 14 : 1s^2 2s^2 2p^3$.

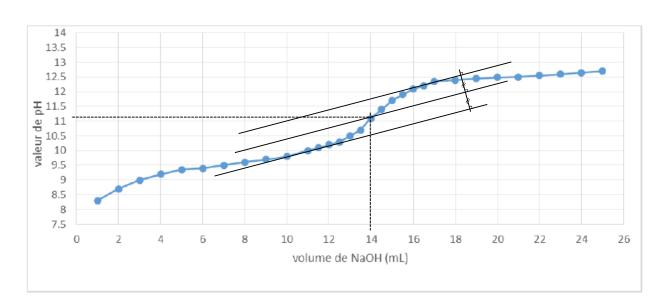
Schémas de Lewis:



11 -
$$NH_4NO_{3(s)} = NH_{4(aq)}^+ + NO_{3(aq)}^-$$
.

- 12 L'ion ammonium NH_4^+ est un acide, sa base conjuguée est NH_3 . Demi-équation : $NH_4^+ = NH_3 + H^+$, c'est bien l'acide qui cède un H^+ .
- 13 Couples : NH_4^+/NH_3 et H_2O/HO^- . L'acide NH_4^+ réagit avec la base HO^- : $NH_4^+ + HO^- = NH_3 + H_2O$.
- 14 On utilise la méthode des tangentes parallèles.

À l'équivalence, $V_E = 14 \,\mathrm{mL}$ et pH = 11,1 (environ).



15 - À l'équivalence HO^- et $\mathrm{NH_4}^+$ sont entièrement consommés. Il reste le $\mathrm{NH_3}$ formé par la réaction, et bien sûr de l'eau et les ions spectateurs Na^+ et $\mathrm{NO_3}^-$.

C'est donc NH_3 qui prédomine, et c'est la forme basique du couple NH_4^+/NH_3 , donc si on fait un diagramme de prédominance on réalise que nécessairement pH > pKa = 9.2, d'où un pH basique.

16 - À l'équivalence : $\frac{n_{\mathrm{NH_4^+,initial}}}{1} = \frac{n_{\mathrm{HO^-,vers\acute{e}}}}{1}$, d'où $n_{\mathrm{NH_4^+,initial}} = cV_E$.

Ceci est la quantité de matière dans le bécher. Dans la fiole il y en a 25 fois plus, donc $n_{\mathrm{NH_4^+,fiole}} = 25 \times cV_E = 7,00 \times 10^{-2}\,\mathrm{mol.}$

17 - Vue l'équation de la dissolution (cf plus haut), on a dans la fiole

$$n_{\rm NH_4NO_3} = n_{\rm NH_4^+, fiole} = 7.00 \times 10^{-2} \,\rm mol.$$

18 - Dans la fiole, la masse d'azote est $m = 2 \times n_{\text{NH}_4\text{NO}_3} \times M_N = 2 \times 7 \times 10^{-2} \times 14$ (il y a deux atomes d'azote par molécule de NH₄NO₃), soit m = 2 g.

La masse totale d'engrais était de 6 g. Or $2/6 = 1/3 \simeq 33\%$, ce qui correspond bien aux 34% annoncés par le fabriquant.

III Cinétique de la dissolution du carbonate de calcium dans une solution acide _____

PT B-chimie 2019

19 - C'est un acide fort donc il est entièrement dissout dans l'eau : $HCl + H_2O = Cl^- + H_3O^+$ est totale.

La concentration en H_3O^+ est donc $c_a = 0.10 \,\mathrm{mol/L}$, et $pH = -\log[H_3O^+] = 1$.

III.1 Première méthode

20 - Loi des gaz parfaits :
$$n(CO_2) = \frac{p(CO_2) V}{RT}$$
.

21 - Tableau d'avancement :

On voit donc que $x = n(CO_2)$.

À
$$t = 100 \,\text{s}$$
 on a $x = n(\text{CO}_2) = \frac{p(\text{CO}_2) \, V}{RT} = 7170 \times 10^{-3} \times 4 \times 10^{-4} = 2.87 \times 10^{-3} \,\text{mol}$, soit
$$x = 2.87 \,\text{mmol}$$
.

III.2 Seconde méthode

22 - * On a $n(H^+) = [H^+_{(aq)}] \times V_0$ $(V_0 = 100 \,\mathrm{mL} \text{ est le volume de la solution}).$

* On reprend le tableau d'avancement précédent : $n(H^+) = c_a V_0 - 2x$, et donc

$$x = \frac{c_a V_0 - n(\mathbf{H}^+)}{2}.$$

* À
$$t = 10 \text{ s on trouve}$$
 $x = \frac{1}{2}(0.1 \times 0.1 - 9 \times 10^{-3}) = 0.5 \text{ mmol.}$

23 - Les deux méthodes sont cohérentes entre elles puisqu'elles mènent aux mêmes résultats pour l'avancement x (à des incertitudes expérimentales près).

III.3 Étude de la cinétique

24 - Le nombre stœchiométrique de H⁺ est -2, d'où la relation $\frac{d[H^+]}{dt} = -2v$

25 - \star Ordre 0, donc v = k.

Or
$$\frac{\mathrm{d}[\mathrm{H}^+]}{\mathrm{d}t} = -2v$$
, donc on a l'équation $\boxed{\frac{\mathrm{d}[\mathrm{H}^+]}{\mathrm{d}t} = -2k}$.

 \star On primitive : $[\mathrm{H}^+] = -2kt + A$ avec A une constante d'intégration.

À
$$t = 0$$
, on a $[H^+](0) = c_a = A$.

D'où
$$[H^{+}](t) = c_a - 2kt.$$

* Enfin, on avait $x = \frac{c_a V_0 - n(H^+)}{2} = \frac{c_a V_0 - [H^+] V_0}{2}$, d'où en remplaçant :

$$x = \frac{c_a V_0 - (c_a - 2kt)V_0}{2} \qquad \text{soit} \qquad \boxed{x(t) = kV_0 t.}$$

26 - \star Ordre 1, donc $v = k[H^+]$.

Or
$$\frac{\mathrm{d}[\mathrm{H}^+]}{\mathrm{d}t} = -2v$$
, donc on a l'équation $\frac{\mathrm{d}[\mathrm{H}^+]}{\mathrm{d}t} = -2k[\mathrm{H}^+]$.

 \star Solution de la forme : [H⁺] = Ae^{-2kt} avec A une constante d'intégration.

À
$$t = 0$$
, on a $[H^+](0) = c_a = A$.

D'où
$$[H^+](t) = c_a e^{-2kt}$$
.

* Enfin, on avait $x = \frac{c_a V_0 - n(H^+)}{2} = \frac{c_a V_0 - [H^+] V_0}{2}$, d'où en remplaçant :

$$x = \frac{c_a V_0 - c_a e^{-2kt} V_0}{2} \quad \text{soit} \quad \left[\ln \left(\frac{c_a V_0 - 2x(t)}{c_a V_0} \right) = -2kt. \right]$$

27 - * Ordre 2, donc $v = k[H^+]^2$.

Or
$$\frac{\mathrm{d}[\mathrm{H}^+]}{\mathrm{d}t} = -2v$$
, donc on a l'équation $\boxed{\frac{\mathrm{d}[\mathrm{H}^+]}{\mathrm{d}t} = -2k[\mathrm{H}^+]^2}$.

* On écrit ceci : $\frac{1}{[H^+]^2} \frac{d[H^+]}{dt} = -2k$, soit encore :

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(-\frac{1}{[\mathrm{H}^+]}\right) = -2k, \quad \text{soit} \quad \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{1}{[\mathrm{H}^+]}\right) = 2k.$$

On primitive:

$$\frac{1}{[\mathbf{H}^+](t)} = 2kt + A$$

avec A une constante d'intégration qu'on obtient via $[H^+](0) = c_a$ donc $\frac{1}{c_a} = 0 + A$.

D'où
$$\frac{1}{[H^+](t)} = 2kt + \frac{1}{c_a}.$$

* Enfin, on avait $n(H^+) = c_a V_0 - 2x$, donc $[H^+] = \frac{n(H^+)}{V_0} = c_a - \frac{2x}{V_0}$, d'où en remplaçant :

$$\frac{1}{c_a - \frac{2x}{V_0}} = 2kt + \frac{1}{c_a}$$
 soit $\frac{1}{c_a V_0 - 2x} = \frac{2kt}{V_0} + \frac{1}{c_a V_0}$,

et donc enfin:

$$\boxed{\frac{1}{c_a V_0 - 2x} - \frac{1}{c_a V_0} = \frac{2kt}{V_0}}.$$

28 - C'est le graphique 3 pour lequel les points suivent une loi affine. Or il s'agit du tracé de y = 1/(0.01 - 2x) en fonction de t.

Et nous avons vu que l'hypothèse d'ordre 2 prévoit (avec $c_aV_0 = 0.1 \times 0.1 = 0.01 \text{ mol}$):

$$\underbrace{\frac{1}{0,01-2x}}_{y} = \underbrace{\frac{1}{c_a V_0}}_{b} + \underbrace{\frac{2k}{V_0}}_{a} \times t, \text{ loi affine.}$$

La réaction est donc d'ordre 2.

La pente est $a=2k/V_0$ et le graphique donne a=1,4318, d'où $k=aV_0/2=0,07.$

Il reste à préciser l'unité : $v = k[H^+]^2$ avec v en mol· $L^{-1} \cdot s^{-1}$ et $[H^+]^2$ en mol $^2 \cdot L^{-2}$, donc l'unité de k est le mol $^{-1} \cdot L \cdot s^{-1}$. Finalement :

$$k = 0.07 \,\mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{s}^{-1}.$$

IV Synthèse de l'ammoniac et équilibre chimique _

29 - a/
$$Q_r = \frac{[\text{CH}_3\text{COO}^-][\text{H}_3\text{O}^+]}{[\text{CH}_3\text{COOH}]}$$
 (on a omis les c°).
b/ $Q_r = \frac{1}{[\text{Cu}^{2+}][\text{HO}^-]^2}$ (on a omis les c°).
c/ $Q_r = \left(\frac{p^\circ}{p_{\text{O}_2}}\right)^3$.

30 - Les deux réactifs sont limitants (normal avec des proportions stœchiométriques), et on voit que $\xi_{\text{max}} = n_0$.

$$\mathbf{31 -} Q_r = \frac{\left(\frac{p_{\mathrm{NH}_3}}{p^{\circ}}\right)^2}{\left(\frac{p_{\mathrm{N}_2}}{p^{\circ}}\right)\left(\frac{p_{\mathrm{H}_2}}{p^{\circ}}\right)^3}.$$

Ensuite chaque pression partielle est donnée par $p_i = \frac{n_i}{n_{\mathrm{tot}}} p_{\mathrm{tot}}$, donc on a

$$Q_r = \frac{\left(\frac{n_{\rm NH_3}}{n_{\rm tot\,gaz}} \frac{p_{\rm tot}}{p^{\circ}}\right)^2}{\left(\frac{n_{\rm N_2}}{n_{\rm tot\,gaz}} \frac{p_{\rm tot}}{p^{\circ}}\right) \left(\frac{n_{\rm H_2}}{n_{\rm tot\,gaz}} \frac{p_{\rm tot}}{p^{\circ}}\right)^3}.$$

32 - Tableau d'avancement :

	$N_{2(g)}$ +	$3{ m H_{2(g)}} =$	2 NH _{3 (g)}	$n_{ m totgaz}$
E.I.	n_0	$3n_0$	0	$4n_0$
ξ	$n_0 - \xi$	$3n_0 - 3\xi$	2ξ	$4n_0 - 2\xi$
E.F.	$n_0 - \xi_f = n_0 (1 - \alpha)$	$3n_0 - 3\xi_f = 3n_0(1 - \alpha)$	$2\xi_f = 2n_0\alpha$	$4n_0 - 2\xi_f = 2n_0(2 - \alpha)$

Justification de la dernière ligne :
$$n_{N_2} = n_0 - \xi_f = n_0 (1 - \xi_f/n_0) = n_0 (1 - \alpha)$$
, $n_{H_2} = 3n_0 - 3\xi_f = 3n_0 (1 - \xi_f/n_0) = 3n_0 (1 - \alpha)$, et $n_{NH_3} = 2\xi_f = 2n_0 \xi_f/n_0 = 2n_0 \alpha$.

33 - On reprend l'expression précédente de Q_r , mais on remplace les quantités de matières

par le contenu des cases qui correspondent dans le tableau d'avancement :

$$Q_{r} = \frac{\left(\frac{n_{\text{NH}_{3}}}{n_{\text{tot gaz}}} \frac{p_{\text{tot}}}{p^{\circ}}\right)^{2}}{\left(\frac{n_{\text{N}_{2}}}{n_{\text{tot gaz}}} \frac{p_{\text{tot}}}{p^{\circ}}\right) \left(\frac{n_{\text{H}_{2}}}{n_{\text{tot gaz}}} \frac{p_{\text{tot}}}{p^{\circ}}\right)^{3}}$$

$$= \frac{n_{\text{NH}_{3}}^{2}}{n_{\text{N}_{2}}} \times n_{\text{tot gaz}}^{2} \left(\frac{p^{\circ}}{p_{\text{tot}}}\right)^{2}$$

$$= \frac{(2\alpha)^{2}}{(1-\alpha)^{3}(1-\alpha)^{3}} \times 2^{2}(2-\alpha)^{2} \left(\frac{p^{\circ}}{p_{\text{tot}}}\right)^{2}$$

$$Q_{r} = \frac{16\alpha^{2}(2-\alpha)^{2}}{27(1-\alpha)^{4}} \times \left(\frac{p^{\circ}}{p_{\text{tot}}}\right)^{2}$$

$$(1)$$

34 - Dans l'état final, on a la loi d'action des masses $K^{\circ}(T) = Q_r$ avec Q_r exprimé ci-dessus.

Pour une température T donnée on trouve la valeur de $K^{\circ}(T)$ (dans une table de données ou par un autre calcul, et pour une pression donnée p_{tot} , on a une équation en α qu'il faut résoudre. On obtient ainsi, pour chaque couple (T,p_{tot}) , la valeur de α .

- **35** On lit $\alpha = 0.6$.
- 36 On voit que le rendement est plus élevé à basse température et à haute pression.

Cependant de trop hautes pressions imposent trop de contraintes mécaniques; et de trop basses températures peuvent ralentir la cinétique de la réaction.